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Abstract:
Intrusion Detection System (IDS) typically generates a huge number of alerts with
high false rate, especially in the large scale network, which result in a huge challenge
on the efficiency and accuracy of the network attack detection. In this paper, an
entropy-based method is proposed to analyze the numerous IDS alerts and detect real
network attacks. We use Shannon entropy to examine the distribution of the source
IP address, destination IP address, source threat and destination threat and datagram
length of IDS alerts; employ Renyi cross entropy to fuse the Shannon entropy vector
to detect network attack. In the experiment, we deploy the Snort to monitor part
of Xi’an Jiaotong University (XJTU) campus network including 32 C-class network
(more than 4000 users), and gather more than 40,000 alerts per hour on average. The
entropy-based method is employed to analyze those alerts and detect network attacks.
The experiment result shows that our method can detect 96% attacks with very low
false alert rate.
Keywords: Network Security, Entropy-based, IDS, Shannon Entropy, Renyi Cross
Entropy.

1 Introduction

Network attacks are defined as the operations that disrupt, deny, degrade, or destroy information
resident in computer networks or the networks themselves. In recent years, more and more network
attacks threatened the reliability and QoS of Internet, compromised the information security and privacy
of users. KSN (Kaspersky Security Network) recorded 73 million Internet browsers attacks on their users
in 2009, and that number skyrocketed to 580,371,937 in 2010 [1]. Symantec reported that they recorded
3 billion attacks from their global sensor and client [2].

Intrusion Detection System (IDS) is used to monitor and capture intrusions into computer and net-
work systems which attempt to compromise their security [3]. With the development of networks, a large
number of computer intrusions occur every day and IDSs have become a necessary addition to the secu-
rity infrastructure of nearly every organization. However, IDSs still suffer from two problems: 1) large
amount of alerts. In fact, more than 1 million alerts are generated by Snort each day in our research; 2)
high false alerts rate. Gina investigated the extent of false alerts problem in Snort using the 1999 DARPA
IDS evaluation data, and found that 69% of total generated alerts are considered to be false alerts [4].
These problems result in a huge challenge on the efficiency and accuracy of the network attack detection.

Several methods have been applied to resolve the problems of large amount of alerts and high false
rate. Pietraszek used the adaptive alert classifier to reduce false alerts, which is trained with lots of labeled
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past alerts [5]. Whereas, it is difficult to label large volume alerts generated in large-scale network.
In order to reduce the false alarms, Mina propose the extend DPCA to standardize the observations
according to the estimated means [6]. Spathoulas and Katsikas propose a post-processing filter based on
the statistical properties of the input alert set [7]. Cisar employ EWMA to detect attacks by analyzing
the intensity of alerts [3]. In our research, 32 C-class subnets are monitored by Snort and more than 1
million alerts are generated every day. Therefore, we propose a method to spot anomalies which is more
tolerable for the operator rather than reduce false alerts.

In information theory, entropy is a measure of the uncertainty associated with a random variable,
which is widely used to analyze the data and detect the anomalies in information security. Lakhina et
al argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveal
both the presence and structure of a wide range of anomalies. Using entropy as a summarization tool
to analyze traffic from two backbone networks, they found that it enables highly sensitive detection of
a wide range of anomalies, augmenting detections by volume-based methods [8]. Brauckhoff ind that
entropy-based summarizations of packet and flow counts are affected less by sampling than volume-based
method in large networks [9]. A. Wagner and B Plattner applied entropy to detect worm and anomaly in
fast IP networks [10]. Relative entropy and Renyi cross entropy can be used to evaluate the similarity
of different distributions. Yan et al use a traffic matrix to represent network state, and use Renyi cross
entropy to analyze matrix traffic and detect anomalies rather than Shannon entropy. The results show

Renyi cross entropy based method can detect DDoS attacks at the beginning with higher detection
rate and lower false rate than Shannon entropy based method [11]. Gu et al proposed an approach to
detect anomalies in the network traffic using Maximum Entropy estimation and relative entropy [12].
The packet distribution of the benign traffic was estimated using Maximum Entropy framework and used
as a baseline to detect the anomalies.

In this paper, an entropy-based method is proposed to detect network attack. The Shannon entropy
and Renyi cross entropy are employed to analyze the distribution characteristics of alert features and
detect network attack. The experimental results under actual network data show that this method can
detect network attack quickly and accurately. The rest of the paper is organized as follows: the method is
introduced in Section 2, and the experimental results are shown in Section 3. Section 4 is the conclusion
and future work.

2 Methodology

In this paper, Snort is used to monitor the network and five statistical features of the Snort alert are
selected. The Shannon entropy is used to analyze the distribution characteristics of alert that reflect the
regularity of network status. When the monitored network runs in normal way, the entropy values are
relatively smooth. Otherwise, the entropy value of one or more features would change. The Renyi cross
entropy of these features is calculated to measure the network status and detect network attacks.

2.1 Snort Alert and Feature Selection

Each Snort alert consists of tens of attributions, such as timestamp, source IP address (sip), source
port, destination IP address ( dip), destination port, priority, datagram length and protocol, etc. Suppose
there are n alerts generated in time interval t. The alerts set in time interval t is denoted as Alert(t) =
{alert1, alert2, . . . , alertn}.

Assuming there are m distinct sip and k distinct dip in Alert(t), we can generate the distinct source
IP addresses set (SIP) and distinct destination IP addresses set (DIP):

S IP = {sip1, sip2, . . . , sipm},

DIP = {dip1, dip2, . . . , dipk}.
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Suppose the number of alerts come from sipi is snumi, and the number of alerts send to dipi is dnumi.
The alert number of each source IP (S NUM) and destination IP (DNUM) can be calculated:

S NUM = {snum1, snum2, . . . , snumm},

DNUM = {dnum1, dnum2, . . . , dnumk}.

There are 4 default priorities of Snort alert: 1, 2, 3 and 4. The threat severity gradually weakens from
1 to 4(high, medium, low, info). In order to strengthen the threat degree of high severity alerts, the threat
degree of the alerti is denoted as threati = 5(4−priorityalerti ) in present work. Suppose the threat degree sum
of all alerts come from sipi is sthreati, and the threat degree sum of all alerts send to dipi is dthreati.
The threat degree of each source IP (S T HREAT ) and destination IP (DT HREAT ) can be calculated:

S T HREAT = {sthreat1, sthreat2, . . . , sthreatm},

DT HREAT = {dthreat1, dthreat2, . . . , dthreatk}.

The datagram length is the size of the packet that breaks the alarm rules of Snort. We search the
distinct datagram length of all alerts, and generate the datagram length set

DGMLEN = {dgmlen1, dgmlen2, . . . , dgmlenx},

where x is the number of the distinct datagram length of all alerts. Suppose the number of alerts whose
datagram length equal to dgmleni is dgmNumi. The alert number with different datagram length can be
calculated:

DGMNUM = {dgmNum1, dgmNum2, . . . , dgmNumx}.

Above 5 features (S NUM,DNUM, S T HREAT,DT HREAT,DGMNUM) are selected to evaluate the
alerts and detect attacks.

2.2 Shannon Entropy-based Feature Analysis

Shannon entropy is used as measures of information and uncertainty [13]. For a dataset X =
{x1, x2, x3, . . . , xn}, each data item x belongs to a class x ∈ Cx. The entropy of X relative to Cx is
defined as

H(X) = −
n∑

i=1

pi log2 pi (1)

where pi is the probability of xi in X.
The distribution characteristics of five features are analyzed using Shannon entropy. The entropies

of S NUM and DNUM in time interval t can be calculated

H(S ipt) = −
m∑

i=1

(snumi/n) log(snumi/n) (2)

H(Dipt) = −
k∑

i=1

(dnumi/n) log(dnumi/n) (3)

The entropy of S T HREAT and DT HREAT can be calculated:

H(S threatt) = −
m∑

i=1

threat_o f _sip(i)
sum_threat

· log
(
threat_o f _sip(i)

sum_threat

)
(4)
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H(Dthreatt) = −
k∑

i=1

threat_o f _dip(i)
sum_threat

· log
(
threat_o f _dip(i)

sum_threat

)
(5)

where threat_o f _sip(i) is the threat sum of the alerts from sipi, threat_o f _dip(i) is the threat sum of
the alerts to dipi, and sum_threat is the threat sum of all the alerts in ALERTS which can be calculated
using

sum_threat =
n∑

i=1

threati (6)

The entropy of datagram length is

H(Dgmlent) = −
x∑

i=1

(dgmNumi/n) · log(dgmNumi/n) (7)

After calculating the entropies of above features, we can use an entropy vector V(t) = [H(S ipt),H(Dipt),
H(S threatt),H(Dthreatt),H(Dgmlent)] to represent the network status of time interval t.

2.3 Renyi Cross Entropy-based Attack Detection

The Renyi entropy, a generalization of Shannon entropy, is a measure for quantifying the diversity,
uncertainty or randomness of a system. The Renyi entropy of order α is defined as

Hα(P) =
1

1 − α log2

∑
r

pαr (8)

where 0 < α < 1, P is a discrete stochastic variable, and pr is the distribution function of P [14]. Higher
values of α, approaching 1, giving a Renyi entropy which is increasingly determined by consideration of
only the highest probability events. Lower values of α, approaching zero, giving a Renyi entropy which
increasingly weights all possible events more equally, regardless of their probabilities. The special case
α→ 1 gives the Shannon entropy. The Renyi cross entropy of order α is derived as

Iα(p, q) =
1

1 − α log2

∑
r

pαr
qα−1

r
(9)

where p and q are two discrete variables, pr and qr are their distribution functions [14]. If α = 0.5,
the Renyi cross entropy is symmetric, which means Iα(p, q) = Iα(q, p). In the rest of the paper, when
referring to the cross entropy we mean the symmetric case

I0.5(p, q) = 2 log2

∑
r

√
prqr (10)

The Renyi cross entropy is used to fuse the values of different features. As mentioned above, we
use an entropy vector V(t) = [H(S ipt),H(Dipt),H(S threatt),H(Dthreatt),H(Dgmlent)] to represent
the network status of time t, thus the network status can be viewed as a time series of entropy vector
V(1),V(2), . . . ,V(t). Before calculating Renyi cross entropy, V(t) is unitized to

V̄(t) = [H̄(S ipt), H̄(Dipt), H̄(S threatt), H̄(Dthreatt), H̄(Dgmlent)] (11)

where

H̄(S ipt) = H(S ipt)/Hsum

H̄(S threatt) = H(S threatt)/Hsum

H̄(Dipt) = H(Dipt)/Hsum (12)

H̄(Dthreatt) = H(Dthreatt)/Hsum

H̄(Dgmlent) = H(Dgmlent)/Hsum
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and Hsum = H(S ipt) + H(Dipt) + H(S threatt) + H(Dthreatt) + H(Dgmlent).
To determine if there is any change in the network at time t compare with previous time t− 1, we use

the following equation to calculate the Renyi cross entropy of V̄(t) and V̄(t − 1)

I0.5(V̄(t), V̄(t − 1)) = 2 log2

∑
r

√
pr(t − 1)pr(t) (13)

We set η as the threshold of
∣∣∣I0.5(V̄(t − 1), V̄(t))

∣∣∣ to test whether there is a change. The choice of
threshold η is network dependent and it can be set as experience. Since our purpose is to detect network
attack, it is not enough to compare network status of time t to its previous time t − 1, unless we make
sure that no attack occurs in time t − 1. Thus, the average of the latest n normalized Shannon Entropies
is employed to replace the t − 1, called V̄(t, n)

V̄(t, n) =
1
n

n∑
i=1

V̄(t − i) (14)

Then, we calculate the Renyi cross entropy of V̄(t) and V̄(t, n), and network attack is detected if its
absolute is greater than η.

I0.5(V̄(t, n), V̄(t)) = 2 log2

∑
r

√
pr(t, n)pr(t) (15)

3 Experiment Results

3.1 Data Collection

In the research, we have used Snort to monitor 32 C-class subnets in the Xi’an Jiaotong University
campus network for two weeks, which include more than 4,000 users. In this paper, we select the alerts
gathered in 2010-12-6. There are 862,284 alerts with 65 signatures, which come from 42,473 distinct
source IP addresses and send to 11,790 distinct destination IP addresses.

Figure 1: The statistical results of alerts (2010-12-6).

As shown in Fig.1, four statistical features of alerts display the trend as the people living customs
and habits (the time interval set as 5 seconds). Few alerts are generated in the middle night; then, more
alerts are detected from 8:00 to 10:00 when students get up successively; the alerts keep the same trend
from 10:00 to 23:30; the alerts collapse at last 30 minutes, since network constraint due to the dormitory
administrating rules.

At the same time, the statistical features change abruptly in some time intervals. In general, these
abnormal upheavals are the sign of the faults or network attacks.
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We select two alerts sets in different time period as training and test data set:
Training data set includes 170,516 alerts generated from 10:00 to 14:00. These alerts come from

13,148 IP addresses and send to 7,570 IP addresses. By analyzing these alerts manually, we identify 87
host scan attacks, 5 port scan attacks, 1 DoS attack and 1 host intrusion.

Test data set includes 578,389 alerts generated from 14:00 to 23:30. These alerts come from 29,327
IP addresses and send to 10,590 IP addresses. By analyzing these alerts manually, we identify 203 host
scan attacks, 7 port scan attacks, 6 DoS attack, 3 host intrusion and 1 worm attack.

3.2 Entropy-based Attack Detection

The training data is evaluated by Shannon entropy, as shown in Fig. 2 (a). We remove the alerts
associated to true attacks, which called as Attack Alert. The remainders are called as Flase Alert. We
re-evaluate the Noise Alert in the training data set, as shown in Fig. 2 (b). The Shannon entropies are
relatively smooth when no attack occurs; otherwise, one or some of the values would change abruptly.

(a) All alerts (b) False alerts

Figure 2: Shannon entropy.

Although the Shannon entropies reflect the regularity of network status, it is difficult to detect attack
directly by using five fixed thresholds. Because the Shannon entropy value varies with the activities of
end users even the network runs in normal way. In our experiment, the Renyi cross entropy is used to
fuse the Shannon entropy of five statistical features to detect attack. As shown in Fig. 3, we calculate the
Renyi cross entropy of the alerts in train data set using (13). It is clearly shown that 1) the Renyi cross
entropy will change sharply when the network are attacked, see Fig. 3 (a); 2) the Renyi cross entropy
will be close to 0 without the large-scale network attacks and failures, see Fig. 3 (b). Thus, it is easy to
detect attack using fixed threshold.

In the experiments, when ηdetect = −0.016, 84 attacks can be detected from 94 attacks with 11 false
detections. 81 host scan attacks can be detected from 87 host scans. The missed scan attacks last for a
relative long time and with small scan density. 1 port scan is detected from 5 port scans. 1 host intrusion
and 1 DoS attack are detected successfully.

According to (14) and (15), the n and η are important for the accuracy of attack detection. In the
experiments, we set ηbase = {−0.001,−0.002,−0.003, . . . ,−0.04} and n = {5, 10, 15, . . . , 200}. For each
combination of ηbase and n, the training data is analyzed in the following method. Firstly, each V(t) is
unitized to V̄(t) using (11) and (12); Secondly, the Shannon entropy can be calculated using (14). Its
unitized form is V̄(t, n). Finally, V̄(t) is compared with V̄(t, n) using (15) to calculate Renyi cross entropy
value.
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(a) All alerts (b) False alerts

Figure 3: Renyi cross entropy.

In the experiment, ROC (Receiver Operating Characteristic) is used to describe the detection results.
ROC is a graphical plot of true positive rate and false positive rate [15]. Fig. 4(a) shows the ROC curve
of detection results in training data, where the size of NTS n and base threshold ηbase equals (5, 0.005),
(50, 0.02) and (100, 0.04) separately. When detection threshold ηdetect comes to 0, almost all the time
intervals are detected as network attack. Thus, the detection false positive rate and hit rate are both near
100%. A detection result with high hit rate and low false rate is considered to be a good result. In this
case, the ROC curve is plotted at the top left corner, and the AUC value (Area Under ROC Curve) has
large value. In this paper, we use AUC value to evaluate the detection results. The best combination
of n and ?base can be obtained using training data. As shown in Fig. 4(b), the AUC values of all the
combinations are calculated, and the highest AUC is 0.9962 when n = 95 and ηbase = −0.022.

(a) ROC (b) AUC

Figure 4: Detection result on training data set.

3.3 Testing

The test data set is analyzed to detect the attacks using entropy-based method. As shown in Fig. 5,
211 attacks can be detected from 220 attacks (detection rate is as high as 96%) with 8 false detections.
197 host scan attacks can be detected from 203 host scans. 4 port scans are detected from 7 port scans. 3
host intrusions, 1 worm attack and 6 DoS attacks are detected successfully.
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Figure 5: Attack detection results on test data set.

4 Conclusion

In this paper, a new network attack detection method based on entropy is proposed. The source IP,
destination IP, alert treat and alert datagram length are selected from tens of Snort alert attributions. The
Shannon entropy is used to analyze the alerts to measure the regularity of current network status. The
Renyi cross entropy is employed to fuzz the Shannon entropy on different features to detect network
attacks.

In the experiments, the network traffic of more than 4000 users in 32 C-class network are monitored
using Snort. 748905 alerts, generated from 10:00 to 23:30 Dec. 6 2010, are selected and separated into
training data set and test data set. The experiments show that the Renyi cross entropy value is near 0
when the network runs in normal, otherwise the value will change abruptly when attack occurs. The
attack detection rate of entropy method is as high as 96% with only 8 false alerts.

In next step, more alerts from different time segments will be collected to test our method and an
attack classification method will be considered.
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