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Abstract:
With the rapid growth of Internet information, our individual processing capacity
has become over-whelming. Thus, we really need recommender systems to provide
us with items online in real time. In reality, a user’s interest and an item’s popu-
larity are always changing over time. Therefore, recommendation approaches should
take such changes into consideration. In this paper, we propose two approaches, i.e.,
First Order Sparse Collaborative Filtering (SOCFI) and Second Order Sparse On-
line Collaborative Filtering (SOCFII), to deal with the user-item ratings for online
collaborative filtering. We conduct some experiments on such real data sets as Movie-
Lens100K and MovieLens1M, to evaluate our proposed methods. The results show
that, our proposed approach is able to effectively online update the recommendation
model from a sequence of rating observation. And in terms of RMSE, our proposed
approach outperforms other baseline methods.
Keywords: Recommender systems, Collaborative Filtering, Online learning, SOCFI,
SOCFII

1 Introduction

With the prosperity of such large-scale online commercial websites and online shopping web-
sites as Amazon [1], Barnes, Netflix, eBay, etc, users are continuously exposed into increasing
amount of items. Consequently, the information flow which is increasingly complex and huge
makes the user lost, and thereby be tired of the inefficient search. In order to deal with this
problem, and also to predict the user’s unknown preferences based on some user’s preferences
we have studied [2,3], a modern technique named Collaborative Filtering(CF) is put forward.CF
has become widely used as one of the most successful learning techniques to build real-world
recommendation systems.

Consider online e-commerce applications where a user wishes to watch a movie or buy a
product, the system offers recommendations using CF techniques in exploiting one’s previous
preference and that of others. A good recommendation system is extremely beneficial to users
in accurately predicting their preferences and providing satisfactory recommendations, and con-
sequently benefiting the company [1]. The fundamental assumption of CF is that if two users
rate many items similarly, they will be likely to rate other items similarly [2].
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Despite the successful application in such many fields as book [6], music [7], news [8], etc, all
these traditional CF approaches share a common but critical drawback that these approaches
have to be re-trained completely from scratch whenever new training data arrives, which is
clearly non-scalable for large real recommendation systems in which user’s rating data often
arrives sequentially and frequently [5, 9]. It takes quite a long time to learn a new model when
large numbers of parameters need to be estimated. The popularity of items and the interests of
users are always changing over time [10, 11]. Therefore, Recommendation approaches shall take
these changes into consideration.

Traditional CF approaches work well on the user-item rating data when the latent factors
number k is very small. However, when the k become large, these approaches fail to well deal
with the user-item rating data, since the user-item rating data is sparse and of large scale, and
many approaches need a large k to get accurate results. Although the batch algorithm of matrix
factorization has a high accuracy, we can’t stand the high memory cost and time complexity in
the real-world recommender system.

Nowadays, the data recommendation system which has a enormous amount of data is charac-
terized as followed [12]: (1) high volume, system need to deal with huge amount of training data;
(2) high velocity, new data often arrives very rapidly and sequentially; (3) high dimensionality,
the data from users has a large number of features; (4) high sparsity, many feature elements are
zero.

To tackle the above challenges, recent years have witnessed some studies for online collabo-
rative filtering [3,4]. The state-of-the-art Online Collaborative Filtering (OCF) approach avoids
the highly expensive re-training cost of traditional batch matrix factorization algorithms by ap-
plying the simple online gradient descent (OGD) algorithms to solve the matrix factorization
task [3]. Muqeet Ali et al. proposed a parallel collaborative filtering for streaming data by using
distributed stochastic gradient descent algorithm [4].

Unfortunately, these methods are generally based on the first order optimization framework
(e.g., online gradient descent) to find the optimal solutions of low-rank matrix factorization.
The ignorance of second order information results in the slow convergence of these approaches.
Besides, the latent factors number is actually quite likely to be very large which is a difficulty for
the first order optimization framework even the framework which has already taken the second
order information. To tackle this issue, we propose to solve the following sparse collaborative
filtering problem. To address the weakness of these first order or second order online CF ap-
proaches and reduce data storage space and increase computing speed, we propose such Sparse
Online Collaborative Filtering (SOCF) as First Order Sparse Collaborative Filtering (SOCFI)
and Second Order Sparse Online Collaborative Filtering (SOCFII). Our proposed approach is
able to effectively online update the recommendation model from a sequence of rating observa-
tion. The Sparse Online Collaborative Filtering (SOCF) takes consider the latent factors of the
low rank matrix and online second order optimization method. The key idea of SOCF is to not
only update the user and item weight vectors at each round, but also estimate their distribution
and take full account of large latent factors. Because of full account of this case, SOCF converges
significantly faster and thus achieves much lower values of RMSE and MAE than those of the
regular first order algorithms when receiving the same amount of rating observations.

The rest of the paper is organized as follows. Section 2 introduces the background informa-
tion and presents the problem formulation. Section 3 exhibits the proposed Sparse Collaborative
Filtering algorithm, which takes first order and second order information into consideration. Sec-
tion 4 presents our experimental results and analysis. Section 5 draws conclusions and discusses
the future work.
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2 Background Information and Related Work

In this section, we introduce some background information, related works and the problem
we’re going to solve.

Collaborative filter (CF) and content-based filtering are two strategies widely used in rec-
ommendation systems for recommending items for users. CF makes prediction by using only
the user-item interaction indormation without additional information or domain knowledge, so
it has a wider application. The key idea of the CF is that users who have similar preferences in
the past are likely to have similar preferences in the future.

Memory-based algorithms show good performance on accuracy, but they cannot handle scal-
ability and sparsity problems of data. All these CF algorithms achieved good results without
using additional information. In order to solve the data sparsity problems, many model-based CF
methods have been proposed. Model-based CF techniques aim at building a model to represent
user rating data, and use that model to predict user preference for a specific item. For example,
the Singular Value Decompositon (SVD) obtains the main factors to reduce dimensimality. Hof-
mann converts the Latent semantic model from information retrieval to collaborative filtering.
These models not only reduce the dimensions of the user-item matrix and smooth out the noise
information, but also help the algorithm to alleviate scalability of data.

Recommendation systems provide an effective way for information filtering to discover useful
information according to the historical preferences expressed by users [15]. At present, CF ap-
proaches, as the most widerly used method in recommendation system, can be generally grouped
into two types: model-based CF and memory-based CF. Model-based CF approaches provide
item with recommendation by first developing a model of user ratings, and then predicting user’s
preference for a specific item through reained model [13–16]. While memory-based approaches
predict rating of users according to all user ratings [1, 7, 20]. Generally, the Model-based CF
approaches is more accurate than memory-based approaches [21].

Matrix factorization is one of the most popular and the state-of-the-art methods of model-
based CF approaches, which was used by the winner of the Netflix prize [22–25]. SVD puts the
items that are highly relevant and apparent together as a Singular factor, and breaks up the
vector into a small order approximation matrix. One user with one item represents a vector
in this space and the rating that a user assigns to an item is the dot product of their feature
vectors [26]. The key idea of latent factor model assumes that the similarity between users and
items is discovered by the lower-dimension data. The system minimizes the regularized squared
error on the set of known ratings to learn the factor vectors [27]. Low rank matrix factorization
is considered to be a very effective method and achieves good results in practice [20, 28].

We will base our matrix factorization study on the collaborative filtering, which is tradition-
ally defined as: ∑

(a,b)∈A

l(ra,b, Ua, Vb) +
λ

2

(
m∑
a=1

∥Ua∥2 +
n∑

b=1

∥Vb∥2
)

Where A ⊆ {(a, b)|ra,b is known}, l(r, U, V ) = (r − UTV )2, Ua, Vb ∈ Rk and λ is a regular-
ization parameter. A is the user-item rating set we have known.

Although the matrix factorization technique can obtain high accuracy, we cannot stand with
it for a long time to run. Stochastic gradient descent algorithm requires an iterative many times
until convergence. In practical, the model-based approaches have to be retrained completely
for new records when new users’ rating data arrives sequentially and frequently [6]. In contrast
to traditional collaborative filtering algorithms, online learning promptly update the predictive
model and able to avoid expensive re-training cost when a new instance appears [7, 8]. In
online algorithms, these models need to be retrained when each new data arrives. The online
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algorithms only need a single iteration which processes the events in the order of time over the
training data [30]. Although the online learning algorithm loses some accuracy, it avoids high
time complexity and memory cost.

3 Sparse Collaborative Filtering Algorithm

In this section, we introduce our proposed sparse collaborative filtering algorithms, including
First Sparse Order Collaborative Filtering (SOCFI) algorithm and Second Order Online Sparse
Collaborative Filtering (SOCFII) algorithm.

3.1 First Online Sparse Collaborative Filtering Algorithm

With N users and M items in the user-item rating matrix is broken up into two low rank
matrixes. The user-item rating matrix R ∈ RN∗M is broken down into two low rank matrixes.
Ua is the a-th row from the user matrix U ∈ RN∗K , and Vb is the b-th row form item matrix
V ∈ RM∗K . The rank of K ≪ min{N,M}. ra,b is the movie b rated by user a. The predicted
score is the dot product of Ua and Vb, i.e., r̂a,b = UT

a Vb. |C| represents the number of observed
ratings. In general, one can define different type of loss function for different purposes. For
example, for the Root Mean Square Error (RMSE), i.e., , we define the loss by the square error
function as:

RMSE =

√√√√ 1

|C|
∑

(a,b)∈C

(ra,b − r̂a,b)2

We define the loss by the square error function as:

l(Ua, Vb, ra,b) = (ra,b − UaV
T
b )2

And for the Mean Absolute Error (MAE), i.e., MAE = 1
|C|
∑

(a,b)∈C |ra,b − r̂a,b| , we define
the absolute loss function as:

l(Ua, Vb, ra,b) = |ra,b − UaV
T
b |

Traditionally, k is treated as the latent factors number. When k is set as a small value, the
traditional algorithm will work well. However, when k is set as a large number, the algorithm
will fail, which implies the traditional algorithm cannot tackle tasks with large factors number.
However, the latent factors number is quite likely to be very large in reality. To tackle this issue,
we propose to solve the following sparse collaborative filtering problem,

∑
(a,b)∈A

l(ra,b, ua, vb) +
λ

2

(
m∑
a=1

∥ua∥2 +
n∑

b=1

∥vb∥2
)

+ τ

(
m∑
a=1

∥ua∥1 +
n∑

b=1

∥vb∥1

)

Furthermore, since the data usually comes one by one, we propose to solve the sparse col-
laborative filtering problems through online learning techniques. Specifically, we will update the
two vectors as follows:

ua ← argmin
u
⟨∂ul(ra,b,ua,vb) + λua,u⟩+ τ∥u∥1 +

1

2ηt
∥u− ua∥2

And
vb ← argmin

v
⟨∂vl(ra,b,ua,vb) + λvb,v⟩+ τ∥v∥1 +

1

2ηt
∥v − vb∥2
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These two updates enjoys closed-form solutions:

ua ← STτηt[(1− ηtλ)ua − ηt∂ul(ra,b,ua,vb)] (1)

And
vb ← STτηt[(1− ηtλ)vb − ηt∂vl(ra,b,ua,vb)] (2)

Where STv(w) = sign(w)⊙ [|w| − v]+ and ⊙ denotes element-wise product.

3.2 Second Online Sparse Collaborative Filtering Algorithm

In order to improve the convergence speed, we propose a second order online collaborative
filtering algorithm. The key idea of SOCFII is to not only update the user and item weight
vectors at each round, but also estimate their distribution, i.e., mean and covariance matrix.
In the second order online collaborative filtering, where ua and vb are assumed satisfy Gaussian
distributions. The objective functions are

DKL

(
N(µua ,

∑
ua

)∥N(µua,t,
∑

ua,t
)
)
+ ηl(ra,b,ua,vb) +

λ

2
vT
b

∑
ua

vb

And
DKL

(
N(µv,

∑
vb

)∥N(µva,t,
∑

vb,t
)
)
+ ηl(ra,b,ua,vb) +

λ

2
uT
a

∑
vb

ua

Where KKL is KL divergence.
In this way, the algorithm significantly outperform first order algorithm. However, the latent

number k has to be set as a small value. To solve this issue we proposed the following two online
objective functions:

Cua(µua ,
∑

ua

) = DKL

(
N(µua ,

∑
ua

)∥N(µua,t,
∑

ua,t
)
)
+ η⟨∂ul(ra,b, µua,t,vb), µua⟩

+
λ

2
vT
b

∑
ua

vb + ητ∥µua∥1

And

Cvb
(µvb

,
∑

vb

) = DKL

(
N(µvb

,
∑

vb

)∥N(µvb,t,
∑

va,t
)
)
+ η⟨∂vl(ra,b, µvb,t,vb), µvb

⟩

+
λ

2
uT
a

∑
vb

ua + ητ∥µvb
∥1

These objectives linearize the loss functions and introduce sparsity regularization. We can
solve these two objectives in two steps:

µua,t+1 = argmin
µua

Cua(µua ,
∑

ua

)

= argmin
µua

1

2
(µua − µua , t)

T
∑−1

µua,t

(µua − µua,t)

+ η⟨∂ul(ra,b, µua,t,vb), µua⟩+ ητ∥µua∥1

∑
ua,t+1

= argmin∑
ua

Cua(µua ,
∑

ua

)

i.e.,
∑

ua,t+1
=
∑
ua,t

−
∑

ua,t
vbv

T
b

∑
ua,t

1/λ+ vT
b

∑
ua,t

vb
(3)
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And

µvb,t+1 = argmin
µvb

Cvb
(µvb

,
∑

vb

)

= argmin
µvb

1

2
(µvb

− µvb,t)
T
∑−1

µvb,t

(µvb
− µvb,t)

= + η⟨∂vl(ra,b, µvb,t,vb), µvb
⟩+ ητ∥µvb

∥1

∑
vb,t+1

= argmin∑
vb

Cvb
(µvb

,
∑

vb

)

i.e.,
∑

vb,t+1
=
∑
vb,t

−
∑

vb,t
uau

T
a

∑
vb,t

1/λ+ vT
b

∑
vb,t

vb
(4)

In practice, it is computationally expensive to get µua,t+1, µvb,t+1 and update
∑

ua,t+1,∑
vb,t+1. To solve this issue, we can set the covariance matrices as diagonal, which will produce

the following closed-form solutions for the two mean vectors:

(µua,t+1)i = STητ(
∑

ua,t)i,i

[
(µua,t)i − η(

∑
ua,t

)i,i(∂ul(ra,b, µua,t,vb))i

]
(5)

And
(µvb,t+1)i = STητ(

∑
vb,t

)i,i

[
(µvb,t)i − η(

∑
vb,t

)i,i(∂vl(ra,b, µvb,t,vb))i

]
(6)

Algorithm 1 First Order Sparse Online Collaborative Filtering (SOCFI)

Require: a sequence of rating pairs {(at, bt, rab), t = 1, · · · , T}
1: Initialization: initialize a random matrix for user matrix U ∈ Rn×k and item matrix V ∈
Rm×k

2: for t = 1, 2 · · · , T do
3: Receive rating prediction request of user at on item bt
4: Make prediction r̂atbt = UatV

T
bt

5: The true rating ratbt is revealed
6: The algorithm suffers a loss l(Ua, Vb, ra,b)
7: Update Uat and Vbt by (1), (2), respectively
8: end for

4 Experiment

In this section, we present the experimental results to evaluate the performance of our pro-
posed methods by using online the Root Square Error (RMSE) on the data set.

Our experiments are performed on two real data sets: MovieLens100k and MovieLens1M.
These two data sets are classic movie rating data sets collected by the MovieLens web site
(www.movielens.umn.edu). MovieLens is publicly available data set, and it is widely used to
study recommendation systems. The MovieLens100K consists of 100,000 ratings from 943 users
on 1,682 movies and the MovieLens1M consists of 1,000,209 ratings from 6,040 users on 3,900
movies.
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Algorithm 2 Second Order Sparse Online Collaborative Filtering (SOCFII)

Require: a sequence of rating pairs {(at, bt, rab), t = 1, · · · , T}
1: Initialization: initialize a random matrix for user matrix U ∈ Rn×k and item matrix V ∈
Rm×k, and covariance matrix

∑
U ,
∑

V to be item I
2: for t = 1, 2 · · · , T do
3: Receive rating prediction request of user at on item bt
4: Make prediction r̂atbt = UatV

T
bt

5: The true rating ratbt is revealed
6: The algorithm suffers a loss l(Ua, Vb, ra,b)
7: Update Uat and Vbt by (3), (4), respectively
8: Update

∑
Ua

and
∑

Vb
by (5), (6), respectively

9: end for

4.1 Compared Algorithm

We compare our methods with other two online algorithm CF algorithms as follow:
(1) OCF: Online Collaborative Filtering for learning a rank-k matrix factorization by using

online gradient descent [3];
(2) DA-OCF: Dual-Averaging method of probabilistic matrix factorization for Online Collab-

orative Filtering by absorbing previous rating information in an approximate average gradient
of the loss [9];

(3) SOCFI: First Order Sparse Online Collaborative Filtering;
(4) SOCFII: Second Order Sparse Online Collaborative Filtering by setting covariance ma-

trices as diagonal to simplify the calculation.
Our experiments are conducted on two real data sets, i.e. MovieLens100k and MovieLens1M,

which are classic movie rating data sets collected by the MovieLens web site (www.movielens.umn.edu).
MovieLens, as a publicly available data set, is widely used to study recommendation systems.
The MovieLens100K consists of 100,000 ratings from 943 users on 1,682 movies while the Movie-
Lens1M consists of 1,000,209 ratings from 6,040 users on 3,900 movies.

The rank parameter k of matrix u and v is set to four cases: 5, 10 and 50, respectively. After
all the parameters are set, all the experiments are conducted 10 times randomly for each data
set. To make a fair comparison, the learn arte r of all algorithms is set to 0.01, and λ parameter
in DAOCF is set to 0.006, which was suggested to achieve the best performance according to
reference [31].

4.2 Experiment and analysis

Table 1: The results of MovieLens100K

MovieLens100K
k=5 k=10 k=50

RMSE RMSE RMSE
OCF 1.1218 0.9904 1.5007

DAOCF 1.1038 1.0882 1.2654
SOCFI 1.4083 1.2502 1.2886
SOCFII 1.0355 0.9859 1.3191

For performance metric, we evaluate the performance of online collaborative filtering algo-
rithms by measuring their scores of online Root Square Error (RMSE) on the test set. The
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(a) MovieLens100K, K=5

 

(b) MovieLens1M, K=5

 

(c) MovieLens100K, K=10
 

(d) MovieLens1M, K=10

average performance of all approaches is shown in Table 1.

Table 2: The results of MovieLens1M

MovieLens1M
k=5 k=10 k=50

RMSE RMSE RMSE
OCF 1.1147 0.9769 1.2345

DAOCF 1.0136 1.0077 1.1286
SOCFI 1.4201 1.2702 1.2577
SOCFII 1.0573 0.9486 1.1179

By comparison with OCF and DAOCF approaches, we can find from table 1 that the SOCFII
always achieves best results on these data sets, while has smaller RSME values in all cases.

When k is set to a small value, such as 5 or 10, both of the traditional algorithm DAOCF and
the SOCFII we proposed perform very well in small scale data sets and large scale data sets. In
small scale data sets in which k is set to a large value, such as 50, the DAOCF works better than
SOCFII. However, when the data sets become large ones, SOCFII achieves best results. Due to
the SOCFI algorithm’s lost on second order information, the SOCFI may not perform very well
in the case of a very small k on both small scale data sets and large scale data sets. However,
in reality, the latent factors number k stands a good chance to be very large. When we turn the
k into a large value, adapting to the real situation, the SOCFI achieves better results on these
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(e) MovieLens100k, K=50

 

(f) MovieLens1M, K=50

Figure 1: Performance of online collaborative filtering approaches on the MovieLens100k and
MovieLens1M data sets.

data sets. This shows that our proposed method which exploits the confidence information can
better handle data online and is suitable to large-scale dynamic collaborative filtering scenario.

To further evaluate our approaches for online learning, Figure 1 shows more details. We
observe that the curve of the DAOCF is always fluctuant instead of smooth. This is disadvanta-
geous for stable output, because sometimes users will be recommended with item which involve
severe and numerous errors. The curves of SOCFII and OCF are very similar. However, the
former is slightly better than the latter.

5 Conclusion and Future Work

In this paper, we propose two approaches to deal with the user-item ratings for online collab-
orative filtering. We focus on the online matrix factorization problem which consists of learning
the basis set of users in order to adapt it to online CF recommender systems. A user’s interest
and an item’s popularity are always changing over a long period of time. So, recommendation
approaches should take such changes into consideration.

Then, an empirical study has been conducted on two benchmark data sets, namely, Movie-
Lens100K and MovieLens1M. These experimental results demonstrate that our online algorithm
achieves more accuracy performance than other online algorithms while dramatically boosting
efficiency. Our approaches are suitable to large-scale dynamic collaborative filtering scenario.

Now, many collaborative filtering algorithms are unable to capture the latest change of user
preferences over time. In the future, we will focus our works on the improving of prediction
accuracy and the accelerating of the speed of our approaches.
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