
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. IV (2009), No. 4, pp. 439-451

MPM Job-shop under Availability Constraints

N. Zribi, L. Duţă, A. El Kamel

Nozha Zribi
École Centrale de Lille
France

Luminiţa Duţă
State University "VALAHIA Tirgoviste", Romania

Abstract: A large part of scheduling literature assumes that machines are avail-
able all the time. In this paper, the MPM Job-shop scheduling problem, where the
machine maintenance has to be performed within certain time intervals inducing ma-
chine unavailability, is studied. Two approaches to solve the problem are proposed.
The first is a two-phase approach where the assignment and the sequencing are solved
separately. The second is an integrated approach based on the exact resolution of the
2-job problem using the geometric approach.
Keywords: genetic algorithm, geometric approach, assignment heuristic

Most of scheduling literature assumes that machines are available all the time. However, in many
realistic situations, e.g., in typical industrial settings, machine breakdowns and preventive scheduled
maintenance have rather quietly common occurrences. These considerations increase the complexity of
any scheduling problem but make the problem closer to the industrial reality [26].

In this paper, we consider the job-shop scheduling with Multi Purpose Machines and availability con-
straints. We consider the deterministic model where the unavailability periods corresponding to mainte-
nance tasks are known in advance. We also assume that preemption of operations is not allowed. More
precisely, an operation Oi j of job Ji on machine Mk starts only if its execution can be finished before Mk
becomes unavailable. The problem considered is a generalization of the classical job-shop problem and
the multi-purpose machine problem studied in [12], where machines are available all times.

As compared to the literature dedicated to classical scheduling problems, studies dealing with lim-
ited machine scheduling problems are rather rare. Availability constraints have been firstly introduced
in single machine [1], [28] and parallel machines [24], [25]. Lee extensively investigated flow-shop
scheduling problems with two machines [15], [18], [19]. In particular, the author defined the resumable,
non-resumable and semi-resumable models. An operation is called resumable if it can be interrupted by
an unavailability period and completed without penalty as soon as the machine becomes available again.
If the part of the operation that has been processed before the unavailability period must be partially (re-
spectively fully) re-executed, then the operation is called semi-resumable (respectively non-resumable).
Recently, flow-shop scheduling problems with two machines and resumable jobs have been treated in
[9] and [14]. Job-shop problem under unavailability constraints has also been considered recently [30],
[3] where authors proposed a branch and bound algorithm for the job-shop problem with heads and tails
and unavailability periods. The problem considered here is strongly NP-hard since problem without un-
availability periods is already strongly NP-hard [12]. In this paper we propose two different approaches
to solve this problem.

The remainder of this paper is organized as follows. After a description of the considered problem
in the following section, we propose first a two-phase method where a heuristic is used to solve the
assignment problem and a genetic algorithm is developed for the sequencing problem. An integrated
method, based on the exact resolution of the 2-job problem, is then developed. A comparison between
the two algorithms is given in section 4.

Copyright c© 2006-2009 by CCC Publications

440 N. Zribi, L. Duţă, A. El Kamel

1 Problem formulation

The MPM job-shop (job shop with Multi Purpose Machines) with availability constraints (J(MPM)NCwin |

Cmax : terminology defined in [29]) may be formulated as follows. There are n jobs J, ...,Jn to be pro-
cessed on a set of m machines R = (M, ...,Mm). Each machine Mr can process at most one job at a
time. Each job Ji consists of a sequence of ni operations, that must be accomplished according to its
manufacturing process. Each operation Oi j (i = , ...,n; j = , ...,ni) can be performed by any machine
Mr in a given set µi j ⊂ R for pi j time units. Each operation is non-preemptive, i.e., it must be accom-
plished without interruption. Moreover, we assume that machine Mr is unavailable during giving periods
corresponding to preventive maintenance. The starting times and durations of these tasks are fixed and
known in advance. We note Kr the number of maintenance tasks on machine Mr. Arl and Drl represent
respectively the starting and the finishing time of the lth maintenance task on machine Mr.
The objective is to find a schedule, defined by the starting time Si j and the completion time Ci j of each
operation Oi j, with a minimum makespan (maxCi j).

The scheduling problem in J(MPM)NCwin | Cmax can be decomposed in two subproblems:

• a routing subproblem that consists in assigning operations to machines;

• an operation scheduling subproblem associated with each machine to minimize the makespan.
This is a Job-Shop scheduling Problem with Availability Constraints J,NCwin | Cmax.

2 Two-phase approach for the problem J(MPM)NCwin | Cmax

2.1 The routing problem

Since the precedence constraints could be relaxed following the decomposition of the problem in
two separate stages, the assignment problem may be treated as a parallel machine problem with the two
additional constraints:

• an operation can be performed by a machine belonging to a subset of the set of the available
machines: partial flexibility

• machines are subjected to several maintenance constraints: the planning horizon is divided into
subintervals

We propose a heuristic based on several priority rules taking into account these two additional con-
straints.

Assignment heuristic

We use a list algorithm based on priority rules in order to construct an initial assignment solution.
Let us define the following parameters:

• ri j: earliest starting time of operation Oi j (definition 1)

• T s
k availability date of machine Mk at iteration s, where s denotes the iteration number

• ERk set of operations which can be performed on machine Mk

• EAs
k set of operations which can be assigned to machine Mk at iteration s

• CMs
k load of machine Mk at iteration s

MPM Job-shop under Availability Constraints 441

Definition 1. To each operation Oi j, we associate an earliest starting time ri j calculated by the following
formula: {

ri, =  ∀ ≤ i≤ n ,ri, j+ = ri, j + pi, j

∀ ≤ j ≤ ni −, ∀ ≤ i≤ n.
(1)

- In step 1, the different parameters are initialized.

- In step 2, for each machine we determine the set EAs
k of operations such that: ri j ≤ T s

k .

- In step 3, we evaluate (the potential) starting time of each operation on each possible machine. The
availability periods are taken into account. In fact we test if the operation can be scheduled before
the next availability period on that machine.

A pair (operation/machine) is selected using the following priority rule:

The less flexible machine Mk (Min CMs
k) is selected. Operations in EAk are sorted in non decreasing

order of card(µi j) (priority is accorded to the less flexible operation). Mk is assigned to the first operation
in EAk which can be scheduled before the next unavailability period.

This priority rule allows occupying the time intervals before the unavailability periods and takes into
account the load of machines and the flexibility degree of each operation.

In order to ensure a high level of the solution quality, we have chosen to improve the assignment
given by the assignment heuristic. To this end, a local improvement search has been studied. Such
search is based on a Tabu algorithm , an adapted routing move technique and an adapted criteria for the
studied problem. In next section, we give a description of the Tabu algorithm.

A Tabu Search Algorithm for the assignment problem

Optimization criteria: For a classical routing problem, where machines are available all times, we
choose, in general, to minimize the workload of the most loaded machine, since it provides a lower
bound for the makespan.

We define, for each assignment S, a lower bound denoted LB(S) for the makespan corresponding to
S. This lower bound is based on relaxation into a set of single-machine problems taking into account
the unavailability periods. The objective of the tabu search algorithm presented here is to minimize
Cr = LB(S) and hence to preoptimize the makespan.

Given an assignment S, we associate with each machine Mk, a single-machine problem πk with ready
times (definition 1), tails (definition 2) and unavailability periods.

A lower bound for πk is the makespan of a preemptive schedule with unavailability periods, based
on the Jackson Preemptive Schedule (JPS) algorithm. Such schedule is calculated for each machine and
LB(S) is the maximum makespan value of these schedules.

Definition 2. After the finishing of operation Oi j , a time of qi j has to go before job Ji is finished
completely. qi j is called the tail of operation Oi j

The procedure of preemptive schedule allows constructing the optimal schedule when preempt-
resume applies and hence to obtain a lower bound for πk due to the two following reasons:

1. The unavailability period is treated as an operation, so the problem here is equivalent to the
preempt-resume case where JPS gives the optimal solution.

2. The unavailability period will start right on its ready time and will never be preempted since it has
the largest tail among the available operations. Preemptive schedule is calculated for each machine
and LB(S) is the maximum makespan value of these schedules.

442 N. Zribi, L. Duţă, A. El Kamel

Description of the Tabu Search (TS) algorithm TS was introduced by Glover as a general iterative
meta-heuristic for solving combinatorial optimization problems [16]. The TS algorithm is as follows.

- The initial solution is obtained by applying the assignment heuristic described above.

- The solution is described as a list of operations with their corresponding machines.

- A routing move is defined by the relocation of a critical operation (operation that belongs to the critical
machine) to a feasible machine position. For a given solution, we consider every possible reloca-
tion of every reroutable critical operation.
The routing move is based on the following steps:

1. Find the critical machine Mkc .

2. Find an operation Oi j that can be assigned to another machine Mk ∈ µi j without increasing
the criterion value.

3. Reassign Oi j to Mk if possible.

- The Tabu list consists of pairs (op;mo), where op denotes the operation that is moved from machine
mo to a different machine.

- The choice of the move is based on the value of Cr which is the maximum makespan value of the
preemptive schedules.

2.2 Genetic Algorithm for the sequencing problem

After the assignment step, each operation is assigned to a fixed machine. Thus the MPM job-shop
problem is reduced to a job-shop problem with availability constraints (JSPAC).

The problem is then to assign a starting time Si j and a completion time Ci j to each operation Oi j

(Ci j = Si j + pi j). The considered objective is to minimize the makespan (Cmax = maxi, jCi j). We propose
a Genetic algorithm to optimize the makespan in a JSPAC.

Coding

According to the literature, two types of approaches exist. In the first, the schedule is directly coded
in the chromosome. In the second, a scheduler is associated to the GA to transform the chromosome
into actual schedule. In this paper, the latter approach is used to code GA chromosomes. In fact, we
use a representation based on job operation. It consists in representing the schedule in a chain of NT
operations (

∑
≤i≤n ni) where operations of the same job are represented by the same symbol Ji, the job

number. Each job Ji appears exactly ni times (ni is the number of operations of Ji) in the chain. For
example , for a job-shop problem of dimension 3*3 (3 jobs and 3 operations per job), an example of a
chromosome is (1 2 1 3 1 3 2 2 3).

The computation of the starting time and the completion time (Si j , Ci j) is obtained according to the
order z of each task in the chain (chromosome) and taking into account the unavailability periods of the
machines.

Crossover and mutation

We use GOX - Generalized Order Crossover , a swap based mutation and an "Intelligent" mutation
operator.

MPM Job-shop under Availability Constraints 443

"Intelligent" mutation operator: This operator consists in reducing the idle time before unavailabil-
ity periods in order to improve the makespan.

This mutation heuristic is described by algorithm 1 and consists in:

For each unavailability period of the critical machine, we exchange an operation scheduled before a
maintenance period with another operation which can begin before this maintenance period, but
is scheduled after this one. All possible permutations are tested. The permutation minimizing the
makespan is selected.

Algorithm 1 Heuristic for the "intelligent" mutation operator

Choose a chromosome X aleatory
calculate the schedule and find the critical machine Mmax

find OMmax : set of operations Oi j assigned to Mmax

For each maintenance period D of Mmax

For each operation Oi j in OMmax finishing before D

For each operation Oi ′ j ′ de OMmax which can begin
before D and having been scheduled after D

Test the permutation of Oi j and Oi ′ j ′

Choose the permutation minimizing the makespan

2.3 Application example

Let us consider an example of a MPM job-shop. It is made of 15 jobs, 5 operations per job and 5
machines. Each machine is subject to two maintenance periods as follows:

M: [201 250],[463 512] means that the machine M is unavailable between the dates 201 and 250
and between the date 463 et 512.
M: [104 139] , [520 588]
M: [233 331], [499 528]
M: [137 186], [507 556]
M: [129 187], [783 881]

1. Assignment step

We apply first the assignment heuristic to obtain an initial solution.

In order to evaluate the solution given by the assignment heuristic, we report in table 1 the load of
the different machines as well as the makespan value of the preemptive schedule constructed using
Jackson rule.

M M M M M

load 714 782 868 789 839
preemptive 812 907 995 887 997
schedule

Table 1: Results of the assignment schedule

2. Sequencing problem

444 N. Zribi, L. Duţă, A. El Kamel

M M M M M

load 815 812 790 818 757
preemptive 913 915 917 916 915
schedule

Table 2: Results of the TS algorithm

0

500

1000

1500

2000

2500

IN
S

T
1

IN
S

T
2

IN
S

T
3

IN
S

T
4

IN
S

T
5

IN
S

T
6

IN
S

T
7

IN
S

T
8

IN
S

T
9

IN
S

T
10

IN
S

T
11

IN
S

T
12

IN
S

T
13

IN
S

T
14

IN
S

T
15

IN
S

T
16

IN
S

T
17

IN
S

T
18

IN
S

T
19

IN
S

T
20

Instances

M
ak

es
p

an
Cmax

LBJMPM

Figure 1: Simulation tests

Table 3 gives the value of the lower bounds based on preemptive schedule for the initial solution
of assignment (solution 1) and the solution obtained after applying TS (solution 2) as well as the
makespan found by the genetic algorithm.
These results show that TS improves the global solution of the problem and GA gives a good
solution comparing to the lower bound. We propose in the next section an integrated approach
based on the exact resolution of the 2-job problem.

solution 1 solution 2
preemptive 997 917
schedule

Makespan 1023 968

Table 3: Results of the genetic algorithm

Other experiments were performed on randomly generated instances with more or less availability
periods. We report in this section different results for three classes of instances. Each class has five
instances. The number of jobs for each class is 10 , 15, 10 and 20 respectively. The number of machines
is equal to 5 , 10, 10 and 10 respectively. The processing time for each operation is randomly selected
in [|40,150|]. For each machine, the maintenance tasks occur after at least one operation. The starting
time for each maintenance task differs from machine to another. The duration of a maintenance task on
a machine is the average of the processing times of operations. For the GA, the mutation and crossover
probabilities are fixed to: (Pcrossover = ., Pmutation = .).

In figure 1 we compare the result of the two-phases approach with a lower bound denoted LBJMPM

that we have developed for the problem [31].
Comparing with LBJMPMAC our approach gives interesting results (RDJMPMAC .%) with a short

computational time. It’s worth noting that LBJMPM, which is based on a lower bound for the parallel
machine problem, is more interesting for instances with high flexibility.

MPM Job-shop under Availability Constraints 445

3 An integrated approach for the J(MPM),NCwin | Cmax

This approach is based on the exact resolution of the problem J(MPM),NCwin|n = |Cmax. A poly-
nomial algorithm is developed to solve the problem.

3.1 Polynomial algorithm for J,NCwin|n = |Cmax

State of the art

The geometric approach has been firstly introduced by Akers and Friedman (1955) in [2]. It consists
in reducing the two-job job-shop scheduling problem in the search of a shortest path and thus gives a
polynomial algorithm to solve it.

The first step of the geometric approach is the representation of the scheduling problem in a 2-
dimensional plane with obstacles, which represent the machine conflict between operations of the two
jobs [22]. More precisely,

- Each job Ji is represented by an axe with ni intervals according to its manufacturing process.

- Each interval corresponds to an operation Oi j and has a length of pi j (fig.2).

- Intervals O j and Ok form an obstacle if O j and Ok share the same machine (fig.2).

- The horizontal and the vertical crossing the final point F, which corresponds to the completion of the
two jobs, are considered as the final obstacle.

A feasible solution of the scheduling problem is then a path going from the origin O to the final
point F . Such a path consists of horizontal, vertical and diagonal legs. A horizontal (resp. vertical) leg
represents the exclusive progression of job J (resp. J), whereas diagonal legs correspond to simulta-
neous executions of the two jobs. Moreover, any path must avoid the interior of the obstacles. This is
due to the fact that two operations can not be executed simultaneously on the same machine and are not
preemptable. The length of a horizontal or vertical segment is equal to its usual length while the length
of a diagonal segment is equal to the length of its projection in any axe, which is the time spent for the
simultaneous processing of two operations.

The shortest path problem in the plane can be transformed into an unrestricted shortest path problem
in an acyclic network (see fig.2), where the set of vertices corresponds to the origin O, the final point
F and the North-West and South-East corners of the obstacles. Each vertex has at most two successors
obtained by going diagonally until hitting an obstacle D. If the obstacle D is the final obstacle, the
vertex F is the only successor of node, otherwise the NW and SE corners of obstacle D, are immediate
successors of node (see fig.2).

The Temporized Geometric Approach (TGA), developed by Aggoune [3], [4] is an extension of the
geometric approach which exactly solve the problem J,NCwin|n = |Cmax. It allows integrating the evo-
lution of time and so the availability of the machines, based on the definition and the introduction of new
vertices, as well as a new and dynamic way to progress from one vertex to its successors.

Vertices Characterization and Definitions in TGA: In the classical geometric approach, vertices of
the network are the north-west (NW) and south-east (SE) corners of the obstacles hit when going diago-
nally in the plane. These corners are located at the extremities of the intervals corresponding to operations
in conflict. Each vertex can then be defined thanks to its coordinates in the plane: the x-coordinate (resp.

446 N. Zribi, L. Duţă, A. El Kamel

J1= {(M1, 1), (M2, 2), (M3, 1)}

J2= {(M2, 2), (M3, 1), (M1, 1)}

 NW1

SE1 O

F

 O

 NW1

 SE1

F

2

3

3

4

Figure 2: Classic geometric approach

y-coordinate) of the vertex corresponds to operation of job J (resp. J) to be executed. In TGA [4],
some vertices can be located between two lines bounding an operation, i.e., inside the intervals. For
each vertex, each coordinate is additionally attributed by information related to the duration of already
processed part of the associated operation. Moreover, an earliest starting time h(S) is associated with
each vertex S. h(S)is the length of the shortest path from the origin to S.

The set of vertices of the network constructed by TGA is composed by the three following types of
vertices:

• Regular vertices, located at the intersection of horizontal and vertical lines, to which NW and SE
corners of obstacles belong.

• Singular vertices, located on a horizontal (resp. vertical) line, which means that the execution of
the operation of job J (resp. J) has not started yet

• Waiting vertices, also located at the intersection of two lines, for which the execution of operations
of jobs J and J has not started yet.

A singular vertex is created if the progression of only one job is possible (availability problem for the
other job), whereas waiting vertices are created if the progression is possible for none of the two jobs. A
waiting vertex is always a duplication of the regular vertex having the same geometric coordinates but
not the same earliest starting time. The progression works as follow:

• If the operations of the two jobs cannot start at time h(S), the earliest starting time of vertex S, a
waiting vertex is then created.

• If there is an availability problem in the direction J (resp. J), the progression is made along the
vertical (resp. horizontal) line, what means that the execution of the operations of job J (resp.
J) only, until job J (resp. J) becomes available. A singular vertex , from which a diagonal
progression is possible, is added as successor of S.

• If there is no availability problem, that is to say if the operations of the two jobs can be executed
at time h(S), the progression works as in the classical geometric approach.

3.2 An extended approach

We propose a generalization of TGA (GTGA) in order to deal with the flexibility property of the
J(MPM),NCwin | n =  | Cmax. This generalization is based on the works of Aggoune [4] and Mati
and al. [21] for the flexible Job-shop without availability constraints. As for the job-shop problem, the

MPM Job-shop under Availability Constraints 447

scheduling of MPM job shop can be represented in the 2-dimensional plane with potential obstacles that
depend on the assignment of machines for the two jobs. Let us define the vertices of the network describ-
ing the progression in the plane, the successors of each vertex and the distance between any two vertices.
We develop the algorithm SuccVertex allowing to find the successors of each vertex S = ((k,∆ 

k
),(k,∆ 

k
)).

The algorithm SuccVertex is in three steps.

• Step 1 is an initialization step. Set Ph (resp Pv) is defined to keep the machines of job J (resp J)
allowing to progress until meeting an horizontal and \ or a vertical. This set is used to progress in
the next iteration of the program in the case of diagonal progression. E is the set of the possible
machines of Ov and E is the set of the possible machines of Oh.

• In step 2, first we check the availability of the two machines for Ov et Oh. If these machines are
available, we progress diagonally until a vertical (end of operation of job 1) and or an horizontal
(end of operation of job 2) is met depending on the duration of the current operations. Set Ph or Pv

is defined to keep the machines of job J or J respectively in the case of diagonal progression. If
an availability problem occurs in one of the two directions, the algorithm SuccVertexAvailability is
used to define the successors of S in this case. The machines concerned by this case are memorized
in sets Pv_ availavility, Rh_ availability, Ph_ availavility and Rv_ availability. These sets are used
by algorithm SuccVertexAvailability. The corners SE and NW of the potential obstacles that could
be reached from S are added as successors of S during the diagonal progression.

• In step 3, we update the current time current_ time, the sets E, E, v and h.

The algorithm SuccVertex is stopped if the final obstacle is hit or when the diagonal progression is not
possible because of availability problems or unavoidable obstacle. The algorithm SuccVertexAvailability
allows progressing horizontally or vertically (availability problem) until the progression in the two di-
rections becomes possible (end of the unavailability period) , in this case a singular or a regular vertex is
added as successor to S ; another availability problem occurs, and in this case a waiting vertex is added
as successor of S or an unavoidable obstacle is hit.
Distance Between Two Vertices S and S ′:

The distance between a vertex vi and its successor vi ′ is calculated inside the two developed algo-
rithms using the variable current_ time. In fact, all machines used to progress from vi until vi ′ are fixed.
Remark: If F is a successor of S, the distance between S and F is calculated using only available ma-
chines, if possible, or machines becoming available first. In fact we neglect the other paths.

Theorem 1. The set of vertices constructed by applying algorithm SuccVertex is sufficient to determine
the optimal schedule.

Proof. The correctness of theorem 1 is due to the fact that TGA gives the optimal schedule in the case
of classical job-shop [3] and the developed algorithm checks all possible machines for each operation.

3.3 The general job shop problem with multi purpose machine and availability con-
straints

From the result of the previous section we can deduce a greedy heuristic to calculate a solution for
J(MPM),NCwin | Cmax. This heuristic works as follows:

1. The two first jobs are optimally scheduled using the GTGA algorithm.

2. Additional unavailability periods, corresponding to the execution of operations of the two sched-
uled jobs, are fixed on each machine.

448 N. Zribi, L. Duţă, A. El Kamel

 Instance size
(nxmxNT)

Two-phase
approach

Integrated
approach

Inst1 10x5x50 852 833
Inst2 10x5x50 641 631
Inst3 10x5x50 697 707
Inst4 10x5x50 710 703
Inst5 10x5x50 633 625
Inst6 15x5x75 945 983
Inst7 15x5x75 897 891
Inst8 15x5x75 1023 1017
Inst9 15x5x75 1001 997

Inst10 15x5x75 998 1002

Table 4: Comparison of the two approaches

3. The algorithm is applied to the next two jobs of the sequence, taking into account the initial and
the new unavailability periods. This procedure continues until all jobs are treated.

If the number of job is odd we need an insertion procedure to schedule the last job. It is based on the
following rule:
An operation of the last job is inserted in such a way, that it begins as early as possible, if we have the
choice between two machines we choose the machine giving the smallest idle time.

4 Experimental results

To perform an experimental evaluation of the proposed approaches, we present, in this paper, a ten
classical flexible job-shop instances [13]. In order to provide proper experimental settings, two avail-
ability periods are generated randomly for each machine. It is worth noting that these results were also
confirmed by several other experiments based on randomly generated instances with more or less sizes
and/or availability periods [31].

In table 4, we report the values of the makespan given respectively by the two-phase approach and
the integrated approach.

These simulations show that the two-phase approach gives interesting results comparing with the
integrated approach. The main advantage of the two-phase approach is related to the computation time.

The integrated approach is rather more complicated mainly in terms of computing time. Besides, we
note that solutions given by the integrated approach vary with the initial sequence of jobs. Hence, this
approach can be improved by adding an optimization algorithm for the initial sequence of jobs. Mean-
while, it appears clearly worth applying this polynomial algorithm in a Branch and Bound algorithm, as
done by Jurisch for the classical MPM job-shop without availability constraints [17].

5 Conclusion

We have investigated in this paper MPM job shop scheduling problems under availability constraints.
We have proposed two kinds of methods. The first one solves the assignment and the sequencing prob-
lems separately. The second one is based on an extension of the geometric approach to deal with the
machine availability and the flexibility property of the problem. We are now working on the develop-
ment of a maintenance management system with an industrial partner including these optimization in
a multi-objective environnement. In fact, The analysis of performance of scheduling problem involves

MPM Job-shop under Availability Constraints 449

more than one criteria [7]. We are focusing on two main criteria : the maintenance total costs and the
delivery processes. Other aspects that we will focus on is the real-time approaches to solve schedule
problem with unanticipated interruptions [5].

Bibliography

[1] Adiri I., Bruno J., Frostig E., and Rinnooy Kan A. H. G. : Single machine flow-time with a single
breakdown. Acta Informatica, 26, 679-696.

[2] S.B. Akers et J. Friedman. – A non-numerical approach to production scheduling problems. Oper-
ations Research, vol. 3, 1955, pp. 3, 429–442.

[3] Aggoune, R.: Ordonnancement d’Ateliers sous Contraintes de Disponibilité des Machines(2002)
Ph.D. Thesis, Université de Metz, France.

[4] Aggoune, R.: Two-job shop Scheduling Problems with availability Constraints. ICAPS 2004, June
3-7, 2004, Whistler, British Columbia, Canada.

[5] Duta, L.: Contribution ŕ l’étude de la conduite des systčmes de désassemblage.These (2006).
Université de Franche-Comté Université de Bucarest.

[6] Duta,L., Filip, F. G. Henrioud,J.-M. Popescu: Disassembly Line Scheduling with Genetic Algo-
rithms. Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. III (2008), No. 3, pp. 270-280.

[7] Filip F.G., Neagu G. and Donciulescu D. (1983). Job shop scheduling optimization in real time
production control. Computers in Industry, 4(4) (North Holland, Amsterdam), 395 - 403.

[8] Ruiz-Torres AJ. , Nakatani K.: Application of real-time simulation to assign due dates on logistic-
manufacturing networks. Proceedings of the 1998 Winter Simulation Conference.

[9] Blazewicz J., Breit J., Formanowicz P., Kubiak W., Schmidt G.: Heuristic algorithms for the two-
machine flowshop problem with limited machine availability. Omega Journal (2001), 29, 599-608.

[10] Carlier J.: Scheduling jobs with release dates and tails on identical machines to minimize the
makespan. European Journal of Operational research(1987), 29:298-306, North-Holland.

[11] Carlier J.: The One-Machine Sequencing Problem, European

Jounal of operational research(1982), 11: 42-47.

[12] Jurisch B.: Scheduling Jobs in Shops with Multi Purpose Machines (1992) Ph.D Thesis, Universität
Osnabrück.

[13] J. Hurink, B. Jurisch et M. Thole. – Tabu search for the job-shop scheduling problem with multi-
purpose machines. Operations Research Spektrum, vol. 15, 1994, pp. 205–215.

[14] Kubiak W., Blazewicz J., Formanowicz P., Breit J., Schmidt G.: Two-machine flow shops with
lim-ited machine availability. European Journal of Opera-tional Research (2002) 136: 528-540.

[15] Lee C.Y.: Machine scheduling with an availability constraint. Journal of Global Optimization(1996)
9: 395-416.

[16] Glover F., Laguna M.: Tabu search, Kluwer Publish- ers, Boston 1997.

450 N. Zribi, L. Duţă, A. El Kamel

[17] Jurisch, B., (1995). Lower bounds for the job-shop scheduling problem on multi-purpose machines.
Discrete Applied Mathematics, 58, 145-156.

[18] Lee C.Y.: Minimizing the mazkespan in two-machine flows-hop scheduling with availability con-
straint. Operations research letters (1997), 20: 129-139, .

[19] Lee C.Y.: Two-machine flowshop scheduling with availability constraints. European Journal of
Opera-tional Research (1999), 114: 420-429.

[20] Lee KM., Yamakawa T.: A Genetic algorithm for general machine scheduling problems. Int.Conf.
on Conventional and knowledge-Based Electronics Systems, Vol 2 pp60-66 Australia, 1998.

[21] Mati, Y., and Xie, X.: Un algorithme polonimial pour le job shop flexible avec blocage : cas de
deux jobs. Mosim’2003, April 23-25 april, Toulouse, France.

[22] Mati, Y., and Xie, X.: The complexity of two-job shop problems with multi-purpose unrelated
machines. European Journal of Operational Research, 152 (1), 159-169, 2004.

[23] Nowicki E., Smutnicki C.: A Fast Taboo Search Algorithm for the Job-Shop Problem, Management
Science (1996), Vol. 42, No. 6, pp. 797-813.

[24] Schmidt G.: Scheduling on semi identical processors. Z. Oper.Res.1984, A28, 153-162, .

[25] Schmidt G.: Scheduling independent tasks with deadlines on semi-identical processors. Journal of
Operational research society, 39, 271-277, 1988.

[26] Sanjay J. , William J. Foley :Impact of Interruptions of Schedule Execution in Flexible Manufac-
turing Systems. The International Journal of Flexible Manufacturing Systems, 14, 319-344, 2002.

[27] Roy B., Sussmann B.: Les probl‘emes d’ordonnancement avec contraintes disjonctives (in French).
Technical Report 9 bis, SEMA, Paris (France), December 1964.

[28] Leon V. J., Wu S. D.: On scheduling with ready-times, due-dates and vacations. Naval Research
Logistics, 39:53-65, 1992.

[29] Schmidt G.: Scheduling with limited machine availability. European Journal of Operational Re-
search(2000), 121, 1-15.

[30] Mauguiere Ph., Billaut J-C., Bouquard J-L.: New single machine and job-shop scheduling problems
with availability constraints. Journal of Scheduling, 2004.

[31] Zribi N. : Ordonnancement des job-shop flexibles sous contraintes de disponibilité des machines.
PHD Thesis, Ecole Centrale de Lille, France, 2005.

Nozha Zribi has obtained an engineer diploma in 2002, a Master of Science and European Master
in Computer Engineering in 2002, and a PhD in operational research from Ecole Centale of Lille
in 2005. Since 2007, she is a research engineer. Her interests are logistics, software design and
implementation and SEA.
Luminiţa Duţă is currently associate professor (lecturer) at "Valahia" University of Targoviste,
Romania. She took the PhD from Université Franche Comté, Besancon (France) and from Techni-
cal University "Politehnica" of Bucharest in Automation and Control field. Her research interests
include the use of decision support systems in complex process controlling and meta-heuristics.
She is a member of IFAC Technical Committees 5.2 and 5.4.

MPM Job-shop under Availability Constraints 451

Abdelkader El Kamel (M’96-SM’00) received the engineering diploma in 1990, the Ph.D. in
1993 and the "Habilitation ŕ Diriger des Recherches" in 2000. He is currently Professor at the
Ecole Centrale de Lille and Visiting Professor in different countries (China, Chili, India and
Tunisia). He is the author or coauthor of more than 100 journal articles, book chapters, plenary
sessions, and communications in international conferences. His current research interests include
intelligent control of complex systems under uncertainty; modeling, design, real-time monitoring
of autonomous dynamical systems and mobile cooperative robots. Dr. El Kamel was the President
of the IEEE-SMC Conference held in Tunisia in 2002. He was Program chair or IPC member
of several IEEE, IFAC and WAC conferences, Member of the AdCom of IEEE France section,
President of the IEEE-SMC TC on "complex systems under uncertainty", Member of the IFAC
TC 3.2 and President of the IEEE-SMC France Chapter.

