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Abstract: In designing a distributed hard real-time system, it is important to reduce
the end-to-end delay of each real-time message in order to ensure quick responses to
external inputs and a high degree of synchronization among cooperating actuators.
In order to provide a real-time guarantee for each message, the related literature
has focused on the analysis of end-to-end delays based on worst-case task phasing.
However, such analyses are too pessimistic because they do not assume a global
clock. With the assumption that task phases can be managed by using a global clock
provided by emerging real-time fieldbuses, such as EtherCAT, we can try to calculate
the optimal task phasing that yields the minimal worst-case end-to-end delay. In this
study, we propose a heuristic to manage the phase offsets in the distributed tasks to
reduce the theoretical end-to-end delay bound. The proposed heuristic reduces the
search time for a solution by identifying time intervals where actual communication
occurs among inter-dependent tasks. Furthermore, to analyze the distribution of end-
to-end delays in different phases, we implemented a simulation tool. The simulation
results showed that the proposed heuristic can reduce worst-case end-to-end delay as
well as jitter in end-to-end delays.

Keywords: task phasing, end-to-end delay, real-time, fieldbus, EtherCAT.

1 Introduction

Fieldbuses are industrial networks widely used in small-to-large-scale distributed control sys-
tems, such as vehicles and factory automation systems. While the fieldbuses define only the
physical, the data link, and the application layers, they provide real-time features for determin-
istic communication latency.

Emerging real-time fieldbuses provide highly accurate clock synchronization as a key feature
to support a global clock in distributed systems. For instance, the distributed clock of EtherCAT
provides accurate clock synchronization with errors smaller than a few tens of nanoseconds [2] [3].

Copyright (©) 2006-2017 by CCC Publications
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Such accurate clock synchronization provides a novel opportunity to adjust task phasing
across distributed computing nodes in order to better synchronize dependent tasks (e.g., multi-
axis motion control). However, obtaining optimal task phasing across distributed nodes has not
been accorded sufficient attention in the literature, whereas worst-case task phasing in each node
has been extensively studied [22] [19] [8]. This is due to coarse-grained clock synchronization on
legacy networks; moreover, the performance analysis of distributed tasks by considering jitters
in task execution time is not straightforward. Thus, researchers have focused on the analysis
of worst-case end-to-end delays while assuming no global clock. However, once we assume a
precise global clock for all nodes, we can investigate the problem of finding an optimal phase
combination of tasks in order to reduce worst-case end-to-end delays. Though few efforts have
been devoted in recent research to enhancing task phasing, these either assume no jitters for
tasks [4] or apply phasing to a single node [11] [10].

In this paper, we describe a novel off-line algorithm that heuristically searches for near-
optimal task phasing with respect to the worst-case end-to-end delay. One novelty of the proposed
algorithm is that it takes into account the jitters in execution times of distributed tasks while
trying to reduce search time to find near-optimal task phasing. An exhaustive search needs to
consider all combinations of the variable execution times of tasks. To reduce search time, our
algorithm deals with feasible time ranges of communication.

To analyze the distribution of end-to-end delays in different phase combinations, we imple-
mented a tool that simulated variable execution times of tasks and the behavior of real-time
fieldbus. In the analysis, we assumed a real-time fieldbus, such as EtherCAT, that comprised
a master and multiple slave nodes. We modeled each node as a set of periodic tasks scheduled
on a uniprocessor by a fixed-priority scheduling algorithm. The results of analysis showed that
our algorithm can efficiently search for a phase combination that can significantly reduce both
worst-case end-to-end delay and jitter.

The rest of this paper is organized as follows: In Sec. 2, we provide an overview of EtherCAT
and discuss related work. In Sec. 3, we describe the system model that we assume in this
study. We outline our algorithm to find a near-optimal task phase combination and describe our
simulation tool for the analysis of end-to-end delays in Sec. 4 and Sec. 5, respectively. Sec. 6
contains details of a case that involves finding an optimal node phase combination for a given
industrial task set. Finally, in Sec. 7, we present conclusions.

2 Background

2.1 EtherCAT

In this paper, we consider EtherCAT as the reference model for real-time fieldbuses. Ether-
CAT is an open specification that covers the physical, the data link and the application layers
of the communication protocol stack. Owing to its low cost, compatibility with the TCP/IP
protocol and efficiency, EtherCAT is becoming popular in many real-time applications such as
factory automation systems and motion control systems.

An EtherCAT network consists of a single master node and multiple slave nodes allowing
various network topologies such as line, daisy chain, and star. The master node generates
EtherCAT telegrams, each of which is encapsulated in Ethernet frames. A telegram may include
several datagrams for different slave nodes, where a datagram includes an address to specify the
corresponding slave node. The master node transmits the resulting Ethernet frames through
the standard Ethernet interface. Each slave node then reads from and writes to the datagram
on the fly in a specially designed network controller called the EtherCAT slave controller. The
EtherCAT slave controller can forward Ethernet frames to the next slave node at the hardware
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level while performing such read-and-write operations. The propagation delay at the controller
is less than 1ps [9]. Thus, EtherCAT provides high-speed message relay between adjacent nodes,
and can guarantee deterministic communication delays.

EtherCAT provides a global clock synchronization feature called Distributed Clock that syn-
chronizes the clocks of the master and slave nodes to the reference clock represented by a selected
slave. The distributed clock controller can generate an interrupt called the Sync signal as the
global reference clock [18]. The signal can operate in either cyclic or single-shot mode, where
the period and shift time are specified in nanosecond resolution. Thus, we can adjust the release
time (i.e., phase) of a task by means of the Sync signal.

2.2 Related work

Sung et al. [18] showed the potential of the global clock provided by EtherCAT for syn-
chronized control processes, but they considered only communication tasks while assuming no
preemption by higher-priority tasks. A few researchers recently suggested heuristic approaches
that iteratively adjusted task phases for isochronous control on EtherCAT [11] [10]. Although
they could improve actuation jitters, the suggested approaches could not be applied at design
phase for a system yet to be constructed because those are based on an on-line algorithm. In
addition, they targeted only task phasing on the master node by assuming a simple task set in
the slave nodes. Craciunas et al. [4] tried to decide the optimal offset of tasks in terms of utility,
but did not consider jitters in execution times of tasks. In this study, we propose a off-line algo-
rithm that searches for a near-optimal task phase combination on both master and slave nodes
while considering jitters in execution times of tasks.

Traditionally, task phasing was addressed in order to obtain worst-case response times of
tasks. Under fixed-priority scheduling, tasks with varying inter-release times were analyzed at
a worst-case time instant, called a critical instant [13], since the release time of each task was
assumed not to be managed. In a distributed real-time system, such an assumption was extended
to every node because the unpredictability of the release time of a task was exacerbated by the
jitters introduced by varying response times of the preceding task [19] [8]. In addition, it was
assumed that the communicating tasks on different nodes were synchronized by messages. There
were also studies to analyze the best-case response time [1] [16], but these studies did not target
distributed systems.

Several studies were conducted on the analysis and simulation of real-time industrial net-
works [17] [6] [7] [22]. These studies, however, did not address task phasing to obtain minimum
worst-case end-to-end delays in the design of distributed real-time systems. It is important to
reduce analysis time to find an optimal solution. For example, Garcia-Valls et al. [21] [20] pro-
posed selectively checking for dynamic systems in real-time reconfiguration. In this study, we
try to reduce analysis time by considering only feasible communication time intervals.

3 System model

We consider a distributed real-time system that interconnects a master node and N — 1 slave
nodes with a real-time fieldbus, which is common in many industrial applications. For example,
in a motion control system, the master node generates position commands to describe motion
trajectory and slave nodes serve as motor drives to respond to these commands. In the following,
we explain the task and the network models, and define end-to-end delay.
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Figure 1: System model

3.1 Task model

We consider a set of periodic tasks for both master and slave nodes and these may have
different sets of tasks. We denote a communication task by 7, (Cmin Cmaz T P, ®,,),
where C™" and C%® are its minimum and maximum execution times, 7, is the period, P,
is its priority, and ¥, is its phase with respect to a certain reference time. The jitter in the
execution time represented by C%* — C™" is caused not only by jitters in system software, but
also by different code branches in tasks. We assume that the relative deadline of each task is
equal to its period. Each node has only one communicating task. The rationale for this is that
many industrial network protocols do not support multiplexing and de-multiplexing between
tasks [5] [14]. Moreover, as the name implies, only the master node is assumed to initiate
message transmission. Fach slave node may only piggyback some data on message passing
through the node on the fly, but cannot initiate message transmission. Thus, there exists a chain
of communicating tasks across nodes (i.e., 71 — 7 — -+ — 7,,) for each communication period
as shown in Fig. 1.

Each communication task gives rise to an infinite sequence of jobs. 7,; denotes the ith job
of 7,. The start time of 7,; is denoted by S, ; and the finish time by F), ;. A sender job on
the master node (i.e., 71 ;) sends a message to the network device at the finish time, F ;, while
receiver jobs on the slave nodes (i.e., 7,4, 1 < n < N) look up the message from the message
queue at the start time, S, ;. We do not suppose that the receiver jobs are synchronously released
by a message; rather, we assume that the jobs are released by a periodic task scheduler as many
real systems do. If there is no message arrived, then the receiver job may finish without further
processing. The periods of the sender and receiver tasks are identical because both operate on the
same message initiated by the master node. The message arrival time of the i message on node
n is represented by A, ;. For task scheduling, we assume a fixed-priority scheduling algorithm,
such as Rate Monotonic [13|. Since each task is assigned a static priority, the execution of a
task assigned a lower priority can be preempted by one assigned a higher priority, which were
modeled as the release jitter in several previous studies. Due to such preemption and jitters in
execution times of tasks, there can be many potential time points at which 7, ; starts. Thus, we

define the start time of 7,; as a set of time points, i.e., S, ; = {s%", oe 891 Similarly, the
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finish time of 7,,; is defined as a set F},; = { r’L”Z”L, oo, frmart - The one-to-many correspondence
R : Sy — Fy,; maps a start time point of 7, ; to a set of potential finish time points. That is,

R(sni) = {f} it fait © Foyeoand R(s mm) "UR(sy'i®) = Fp,i. we also define the arrival

min .. omaz

time A, ; = {am, s

3.2 Network model

Emerging real-time fieldbuses, such as EtherCAT, guarantee deterministic communication
delays between any two nodes through two design choices. The first involves connecting any two
adjacent nodes with a dedicated link. That is, there are no interfering nodes on the link and, thus,
no packet collisions. The second design choice is such that each slave node n conducts cut-through
switching to relay packets between node n—1 and n+ 1, instead of, store-and-forward switching.
This switching scheme when implemented at the hardware level eliminates the likelihood that
the internal software operations of each slave contribute to end-to-end communication delay. As
a result, EtherCAT guarantees deterministic communication delays from the master to any slave
n, which is analyzed by Prytz et al. [15] as follows:

Decomm(n) =Dy(s) + (n—1) x Dy + D,(s), (1)

where De¢opmm(n) is the communication delay from the master’s memory to slave n’s memory as
shown in Fig. 1, Dy(s) is the total transmission time of a message of size s on the master network
device, and Dy is the total forwarding time of a message on the slave side, which is a constant
of 1 s, irrespective of the message size. D,(s) is the total reception time of a message of size s
on the slave network controller. We do not have to consider any delay in piggybacking data on
the message at the slave node because this operation is conducted on the fly while the message
is being forwarded by the network controller.

3.3 Problem statement

In this paper, we define end-to-end delay of the i*" message as the time from the beginning of
the sender job at the master to the completion of the receiver job that consumes the i*" message
at slave. Suppose @1 + Diomm(n) < @y, the ith message is consumed by either 7, ; or 7, ;41 at
slave n because periods of sender and receiver tasks are the same as mentioned in Sec. 3.1.

We define DY%,(n,i) to be the set of end-to-end delay values observed when 7,; consumes
the message on slave, i.e.,
for all f1; and s, ; that satisfy

fl,i + Dcomm(n) < Sn,iy (2)

D% (n,3) = { fai — 51, | fri € Risns), 515 € R™H(fr0)} (3)

where R~ is the inverse correspondence of R defined in Sec. 3.1 (i.e., R-L: Fni— Sni).

We also define DeQe(n, i) to be the set of end-to-end delays when 7, ;11 receives the message
as the message arrives after the beginning of 7, i.e.,
for all f1; and s, ; that satisfy

fl,i + Dcomm(n) > Sn.iy (4)

Dt (n,i) = {friv1 — $14 | fuit1 € Fuiv1, 515 € R™H(fri)}- (5)
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Thus, we define the end-to-end delay Deac(n,1) of the it" message as follows:

De?e(nv 7’) = Dg2e(n7 Z) U D:215(n7 Z) = {d;nén’ ) :Ln;wc : (6)
In this study, we want to analyze the worst-case end-to-end delay max( NI %:ﬁ /Tl)’ where

dpt® = max(Dege(n, 7)), and H is the hyperperiod defined as the least common multiple of the
periods of all tasks. Then, we aim to focus on finding an optimal combination of task phases
leading to the minimal worst-case end-to-end delay:

@l e i) @)

subject to U, < Uypper for 1 <n < N,

where U, and Uypper represent the processor utilization of a given task set on node n and upper-
bound of the utilization which guarantees schedulability, respectively. This is challenging given
that Degc(n,i) has very large number of elements due to variable execution times of tasks and
preemption by higher-priority tasks. In the next section, we describe the proposed algorithm that
searches for a near-optimal task phase combination without calculating all elements of Deoc(n,1).

4 Algorithm for optimal task phasing

In this section, we propose a heuristic algorithm for optimal task phasing with respect to
minimal worst-case end-to-end delay. The algorithm can efficiently consider the jitter in execu-
tion times of tasks. If we exhaust all possible combinations of the variable execution times of
tasks, it requires a long time to analyze the worst-case end-to-end delay for a given task phase
combination. To avoid this, prior to the actual analysis of the worst-case end-to-end delay of a
phase combination, we first determine the time intervals where communication can occur and
efficiently find the worst-case end-to-end delay by using this information.

4.1 Overview

Fig. 2 shows the steps of our algorithm. In order to find the optimal phases of tasks, we
heuristically calculate the worst-case end-to-end delays for different phase combinations. A
phase combination is denoted by Phase; = {1 + A1, 2 + Ag;}, where ,, is an initial sequence of
task phases on node n, and A,, ; is the ith sequence of variations to be added to ,,. If we analyze
end-to-end delays for all possible phase combinations, we need to examine H>! cases, where H
is the hyperperiod, and >t is the number of all tasks in the system. To reduce the number of
search cases, in the first step, we assume that the slave nodes have the same set of tasks, which is
common in many industrial control systems [12] [11]. We do this in order to be able to consider
only the master and the first slave nodes, while simply calculating the phase combinations for the
other slave nodes n (2 < n < N) by adding (n —2) x Dy + D,(s) to the best phase combination
for the first slave node. Moreover, we only consider phases that satisfy ®1 4+ Deomm(2) < ®o,
and do not specifically consider the phases for tasks with lower priority than the communication
task. We also deal with phases with identical relative phase combinations, such as {1,2} and
{1+ Ar,2 + Ar}, as the same phase combinations; thus, we can omit the latter. The granularity
of the task phase is also configurable to reduce analysis time, which is discussed in Sec. 6.3.

More importantly, we need to deal with the variable execution times of tasks. If we consider

every case of variable execution times of all tasks, we need to examine (((C{”‘“ — Oy x H)Ty %

(Cge—Cim)x H [ Try X - - - X (Cs* —Cim) x H [ Trr) % ((C5%7 = C5"™) x H [ Ty x (C1* = CI™) x

m ml
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Step 1: Task Phase Step 2: A11§lyS} s of Step 3: Analysis of Step 4: Suggestion of
Generator Communication Worst-Case End-to- 2 Phase Combination
Ranges (Sec 4.2) End Delay (Sec 4.3)
Phase, ={4,,¢,} Range, = (S, . F, ,4,,5,,F,) Delay, = max(d;y" -+, dy5 ) Phase, for
Phase, ={¢ + A, ,,0, + A, } Range, = (S, ,F, , 4,,S,.F,) Delay, = max(dz'f‘{‘“ o dz,U, 1.) min( Delay,, Delay, ,---, Delay, )

Phase, ={§, + A, .4, + A, ,} Range, = (S, ,F, ,4,,5,.F,) Delay, = max(dyy", -+, dy )
Figure 2: Steps to find optimal phase combination

H/Tg x - x (C}** — mm) X H/Tsk)) cases for each phase combination, where j and k are the

number of non-communicating tasks that have a higher priority than 7; and 75 on the master and
the slave nodes, respectively. We cannot simply reduce the number of these cases by assuming a
larger resolution of execution times, because we can omit the case that generates the worst-case
end-to-end delay with a large resolution. In order to reduce analysis time while considering
variable execution times, the second step of our algorithm analyzes the communication range,
Range;, for each Phase; by only using the minimum and maximum execution times of tasks. A
communication range represents a time interval where actual communication occurs between 7|
and 79. We describe the second step in finding communication ranges in Sec. 4.2.

In the third step, we efficiently calculate the maximum end-to-end delay d3%** for every
message for a given phase. In Sec. 4.3, we detail the third step to analyze the maximum end-
to-end delay for a given communication range. Once we determine the maximum end-to-end
delay for each phase combination, we choose the phase combination that provides the minimum
worst-case end-to-end delay in the last step.

4.2 Analysis of communication ranges

As we have mentioned in Sec. 4.1, in order to analyze the worst-case end-to-end delay for
a given phase combination, we deal with the ranges of communication time points instead of
considering all possible combinations of the execution times of tasks. We find the communication
ranges by using the minimum and maximum execution times of tasks. First, we calculate the
start and finish time ranges for all jobs of 7 on the master node, which are represented by
S ={51,"" iH/T }and Fy = {F{,,--- , F} H/Tl}, respectively, where 51/1 = {smn, S
and F, ; = { ", fm#*}. It should be noted that S}, ; and F}, ; have only minimum and maximum

values, whereas S, ; and F, ; defined in Sec. 3.1 include all possible time points. The time range
information Fj is then translated into the range information of message arrival time on the first

slave node, which is denoted by A = {454, -, ’27H/Tl}, where A5, = {ay{",a5'#"}. The
start and finish time ranges on the first slave node represented by S = {55 4, - ,Sé’ I /TQ} and
Fy={Fy,--,F, w1, } are calculated as well.

For example, Fig. 3 shows the communication range for the first message. For each node in
the figure, the upper row represents time flow with the maximum execution times of tasks while
the lower one shows time flow with the minimum execution times. In the master node of this
example, 7 is preempted by a higher-priority task as shown in the upper row, which results in a
larger s7"{"" than smm The difference between fmm and fi""" becomes even greater due to the
jitter in execution time (i.e., CIMa= —CM) We can calculate ag"{” and az'{” by adding Deomum (2)
to fmm and [, respectlvely. In the slave node, two non-communicating tasks have a higher
priority than 75. Although the figure shows that 791 is not preempted by these higher-priority
tasks in the case of minimum execution time (i.e., the lower row), 7 is delayed by a higher-
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Figure 3: Analysis of communication ranges

priority task at the start point and preempted by the other one during execution in the case
of maximum execution time. Consequently, for the given task set and phase combination, the
range of message arrival, [a5'{", a5’{*], and that of the start time of 751, [s5%"
delay d5'*

, 85'1], overlap. By
providing such information for the third step, we can efficiently analyze the worst-case end-to-end
2,1 -

4.3 Analysis of worst-case end-to-end delay

By using the feasible time ranges of communication provided by the second step, we analyze

the worst-case end-to-end delay for a given task phase. As we have mentioned in Sec. 3.3, to
analyze the worst-case end-to-end delay we need to calculate Deoc(2,4) for 1 < ¢ < H/T; and
find max(dy'{®, -, g’bﬁﬁﬂ) Since Dege(2,i) = DO w9e(2,1) by Eq. 6, we describe how
to calculate max (D%, (2,7)) and max(DJ,%(2,4)) in this section, respectively.

As defined by Eq. 2 and Eq. 3 in Sec. 3.3, D°

626(27 z) U D+1

o9e(2,1) is a set of end-to-end delays calculated
supposing that the i*" receiver job T9; consumes the ith message. However, since we have only
range information represented by minimum and maximum values, we modify Eq. 2 as follows:

172.2'11 + Dcomm(2) man < Sgrflgzm’ (8)
which is satisfied if there is a possibility that the i receiver job receives the i*" message. In this

case, we can calculate the maximum end-to-end delay of the i*" message as follows:
max (D226(2, z)) = 2m7i‘” — min <R_1 (agfim — Dcomm(Q))>
__ rmazx

= foi — min (R_l( lmﬂm))

max

(9)
= J24 —5%”7

= Qg

which is derived from Eq. 3. In order to calculate the end-to-end delay, we need to know the
start time of the sender job (i.e., s1;) and the finish time of the receiver job (i.e., f2;). It is
obvious that the end-to-end delay becomes maximum if the sender sends the message in earliest
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time (i.e., starts at s7%") while the receiver is delayed for as long as possible (i.e., finishes at

27”1‘””) In Eq. 9, the start time of the sender job is reversely calculated from the message arrival

time agffn.
On the other hand, if there is a chance that the message arrives after the beginning of the
i" receiver job, the message happens to be handled by the next (i.e., (i + 1)) job. This occurs

when the following equation derived from Eq. 4 is satisfied:

157+ Deomm(2) = agi™ > s5i™. (10)

Then the equation for finding the maximum end-to-end delay of the i*" message can be derived
from Eq. 5 as follows:

max (DL(2,4)) = f74% — min (R—l (a3, — Dcomm(2))). (11)

eZe

Here a3 ; is the earliest arrival time of the message processed by 72;11. That is,

a*

i = max(smgn + e, a%"), (12)

n,

where € represents a very small value. If the message is arrived at 3312” + € while the receiver job

starts at s5'/", the message is processed by the next receiver job. However, if 57" 4 € < al™t",
b b b

then a%” is the earliest time point. It should be noted that min(’R‘l(a;J — Deomm(2))) in
Eq. 11 can be neither ST;” nor s7';**. However, we have only minimum and maximum values
that present range information to reduce analysis time. Thus, it is difficult to find the exact
min(R™(f1,4)) for arbitrary fi; (i.e., a5; — Deomm(2)), unless we analyze every preemption
point of the sender job by considering variable execution times. Although we could calculate a
converged value by using a recurrence equation for each message, to reduce the time needed for
analysis, we pessimistically assume that the worst-case preemption always occurs and estimate
min(R~(f,.)) as follows:

. (Ymaxr mazx : . (ymax max min
(R N fri C'm- Prmar - if fr Cn,i Prpr® > s, 13
min(R™(fni)) = " in : (13)
sy otherwise,
b
where Pr™?" is the worst-case preemption time of 7, ;. As we calculate s'¢* and f]"** assum-
K b

ing the maximum execution time for both communicating task and non-communicating higher-
priority tasks, the time range [s"¢*, f"®*| includes the worst-case preemption time. Hence,
Pr™a can be expressed as:

max __ pmax mazx mazx
Pr — Jn,i _Sn,i _Cn,i : (14)

By using Eq. 14, we restate Eq. 13 as follows:

. fmar mazr 3 . _ fmazx max min
min(R ™ (f.) = f””’ g Fsnts i i I tSni > Snyi o (15)
Spii s otherwise,

Therefore, by Eq. 9 and Eq. 11, we can find the worst-case end-to-end delay of i** message
as follows:

57 = max (Dee(2, 1))

— max ({ max (Dl (2,1)), max (D(2,1))}). (16)

eZe eZe
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Figure 4: Simulation tool

5 Simulation tool

In real systems, end-to-end delays vary due to jitters in the execution times of tasks. Thus,
it is not feasible to evaluate the distribution and the average of end-to-end delays by using a
simple mathematical equation. Instead, we implemented a simulation tool consisting of four
components: configuration manager, node objects, simulation kernel, and log manager. Fig. 4
shows the overall design of the proposed simulator. The analysis tool is based on discrete-event
simulation to simulate task scheduling, message transmission/forwarding, DMA, and I/O event
handling.

Configuration parameters such as the number of nodes, task sets, network bandwidth, mes-
sage size, and event handling mode are defined in the configuration file in XML format. Thus,
a user of the tool can easily change the attributes of the system to be analyzed. Furthermore,
newly defined attributes can be described simply by extending the XML schema. The configu-
ration module reads the configuration file at the initialization phase and sets the environment
variables of the simulation kernel with values extracted from the configuration file. The config-
uration module also creates node objects as much as described in the configuration file and sets
attributes of these objects, such as event handling mode.

The node objects contains a snapshot of a run-time image of each node, such as the state
information of the run queue and the message queue. The run queue stores task control blocks,
which saves a given task’s mission as well as the amount of time for which it executes for the given
period. The mission is classified into three categories: send, receive, and other. The message
queue stores network messages, which are yet to be sent to the network or yet to be consumed
by a receiver task.

The simulation kernel performs the analysis loops. The simulation kernel consists of a clock
emulator, a CPU emulator, and a network emulator. The clock emulator simulates a synchronized
global clock and increases its counter for every simulation loop.

The CPU emulator run task(s) on each node for every time unit. The scheduler selects a
task to run based on the fixed-priority scheduling algorithm. Our current implementation only
supports the RM scheduling algorithm but our design is general enough to add other scheduling
algorithms. The task executer emulates the behavior of the selected task based on its mission
information. If the mission is send, the task executer posts a send request to the network device
at the finish time of the job. On the contrary, in the receive case, the task executer consumes a
message from the message queue at the start time of the job. The task executer simply consumes
the time for tasks dedicated to other missions. The runtime generator generates the execution
time of a job according to C" and C™%* for every task. In the current implementation, we
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Table 1: Task set on slave nodes

] Task Name ‘ T; and C; ‘ Description

MotorAct | 250us, 25~35us | Controls a motor (highest priority)

RtMsg 250us, 10~15us | Receives real-time messages from the network, and shares it
with the MotorAct task

NrtMsg 250us, 7~10us | Handles non-real-time messages (lower priority than RtMsg)

HealthMon | 500us, 6~9us | Performs health monitoring (lowest priority)

Table 2: Simulation parameters

Parameters Value H Parameters ‘ Value ‘
Network bandwidth | 100 Mbps Network forwarding delay (Dy) 1 ps
Event handling mode | Interrupt Interrupt handling time 5 us

Packet size 50 bytes || DMA overhead for a 50byte packet | 1 us

support uniform distribution and normal distribution for the type of execution time distribution
but other distribution type can also be added.

The network emulator simulates operations of the network device (e.g., message transmission,
DMA, and raising an interrupt). Event handling can be carried out in either polling or interrupt
mode. If the network device is configured as a polling-based device, the event is handled when
a receiver task is released. Thus, in this mode, the network emulator silently inserts a received
message into the receive queue without any notification when it arrives. When the network device
is configured as an interrupt-based device, the network emulator sends an interrupt signal to the
CPU emulator so that the event handler is invoked as soon as a message arrives preempting
a running task. The network emulator also decides the message transmission speed based on
the bandwidth information, and maintains the remaining bytes of a message being sent on each
object node.

The log manager stores the results of analysis in output files. The final output represents the
total running time of the tool, the end-to-end delay for each message, and the average end-to-end
delay. The log manager also saves intermediate information generated during analysis.

6 Industrial case study

In this section, we detail an industrial case to show that our algorithm can efficiently propose
enhanced task phasing across distributed nodes for a given task set.

6.1 Analysis environments

Table 1 shows the task set we ran on the slave nodes. We used the task set defined in Kim et al.
[12] for the motor drive. Each slave node scheduled these tasks using the fixed-priority scheduling
algorithm. We assume that the execution times of tasks followed a uniform distribution, which
was not necessary for our analysis. Table 2 shows the configuration parameters for the simulation
tool. We borrowed such network parameter values as queue size, bandwidth, and forwarding delay
from EtherCAT specifications.
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Figure 5: Distribution of end-to-end delays of different phasing schemes

6.2 Comparisons with other phasing schemes

In this section, we compare end-to-end delays of four phase combinations. One of these
phase combinations was generated by our algorithm in Sec. 4 (Suggested-algo). Another phase
combination was limited to the master node by assuming the critical instant on the slave (Master-
only). The third was generated based on the worst-case execution times (WCET) of tasks
without considering the jitters in execution time (WCET-only). The other phase combination
represented worst-case phasing with respect to end-to-end delay (Worst-case). By utilizing the
simulator described in Sec. 5, we measured the end-to-end delays, and present the cumulative
probability of these and the minimum, average, and maximum end-to-end delays.

The distribution of end-to-end delays of four phase combinations are compared in Fig. 5.
It can be seen that the end-to-end delays of Suggested-algo were distributed among the lowest
values, whereas those of Worst-case yielded the highest values. Although WCET-only adjusted
the phases of tasks, it was largely unable to enhance end-to-end delay in comparison with Worst-
case, because WCET-only did not consider variable execution times of tasks. It is also evident
that Master-only significantly reduced end-to-end delays, but still generated higher values than
Suggested-algo due to the absence of phasing on the slave node.

Fig. 6 compares the minimum, average and maximum end-to-end delays of the four phase
combinations. Compared with Master-only and WCET-only, Suggested-algo yielded end-to-end
delays that were shorter by 19% and 86%, respectively. It also reduced jitter by 67% and 98%,
respectively. In the case of WCET-only, the minimum end-to-end delay was significantly lower
than its average and maximum values. This was because WCET-only shows the lowest end-to-

end delay when tasks consume their WCET, although its probability is very low, as shown in

Fig. 5.

6.3 Impact of phase granularity

As mentioned in Sec. 4.1, we can change the granularity of the task phase to reduce the
number of phase combinations to be considered. A higher granularity can reduce search time
but harms optimality. To analyze the impact of granularity on search time and optimality, we
ran our algorithm by varying granularity and analyzed the worst-case end-to-end delays of the
suggested phase combinations.

Fig. 7 shows that the number of search cases can be significantly reduced with a higher
phasing granularity. However, Fig. 8 shows that the worst-case end-to-end delays increased as
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Figure 8: Worst-case end-to-end delay with different phase granularities

granularity increased, which means that the chances of finding an optimal phase combination
also decreased with a higher granularity.
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Figure 9: Impact of the number of simulated periods on the analysis accuracy

6.4 Accuracy of delay distribution

To analyze the distribution of end-to-end delays, our simulator varied the execution times of
tasks for every period during the simulation. Therefore, the simulator could provide an accurate
distribution when a sufficient number of periods had been simulated. Thus, the larger the number
of periods simulated, the more accurate the distribution of end-to-end delays. In order to analyze
the impact of the number of simulated periods on the accuracy of performance measurement, we
ran our simulator by varying the number of simulated communication periods from 10 to 10,000.

Fig. 9 shows the minimum, average and maximum end-to-end delays analyzed with different
numbers of periods. We can see that the average end-to-end delay of the 10-periods case was
slightly lower than in other cases, while the minimum and maximum end-to-end delays were the
same for all cases. In general, if variations in tasks’ execution time and the number of tasks are
large, a small number of simulated periods may produce a less accurate distribution of end-to-end
delays. However, we would not need an excessively large number of periods, as shown in our
results.

7 Conclusions

In this study, we proposed a heuristic algorithm that searched for a near-optimal task phase
combination on distributed nodes with respect to the minimal worst-case end-to-end delay for
emerging real-time fieldbuses, such as EtherCAT. To reduce search time, the algorithm identifies
time intervals where communication occurs and efficiently calculates the worst-case end-to-end
delay for a given task phase combination without considering all possible execution times of tasks
and their combinations. To analyze the distribution of end-to-end delays of different phasing
approaches, we also implemented a simulation tool that considered variable execution times of
tasks and the behavior of a real-time fieldbus.

We carried out an industrial case study to show that the proposed heuristic can efficiently
suggest near-optimal task phasing across distributed nodes for minimum worst-case end-to-end
delays. The simulation results clearly showed that our algorithm can reduce end-to-end delay
and its jitter by 86% and 98%, respectively, compared with other task phasing approaches. In
summary, we need to consider variable execution times of tasks for optimal phasing of distributed
tasks, but also need to apply task phasing to both master and slave nodes to achieve minimum
worst-case end-to-end delay.
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