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Abstract: Logistic regression plays an important role in machine learning. Peo-
ple excitingly use it in conceptual matching yet with some details to be understood
further. This paper aims to present a reasonable statement on logistic regression
based on fuzzy sets and the factor space theory. An example about breast cancer
diagnosis is displayed to show how the factor space theory can be incorporated into
the understanding and use of logistic regression.

Keywords: logistic regression, factor space theory, fuzzy sets, logistic membership
function

1 Introduction

In 1965, Zadeh put forward the concept of fuzzy subset which made ordinary subset generalize
that the range of grade of membership has been relaxed from binary variables {0,1} to continuous
variables [0,1] [23]. Today, we are facing the tide of big data, the essential meaning of fuzzy set is
shined by its original definition still. Along the way, the factor space theory has been established
to provide a deeper mathematical foundation for artificial intelligence [13—15]. The factor space
theory builds a bridge connecting certainty and uncertainty and the two sides can be transferred
to each other by changing the dimension of related factor space [16].

The falling shadow theory [17] based on factor space was developed to compare fuzziness
with randomness. No matter randomness or fuzziness, they are both caused by a lack of factors.
Randomness is a kind of uncertainty, which is caused by the lack of conditional factors for
predicating. Randomness breaks the law of causality, while probability theory replaces it by a
generalized causality law: even though insufficient conditions can not determine whether an event
will occur or not, they determine the occurrence of an event with a certain probability. Fuzziness
is another kind of uncertainty, which is caused by the lack of identifying factors for recognition.
Fuzziness breaks the law of excluded middle, while fuzzy theory replaces it by a generalized law
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of excluded middle: even though insufficient identifying factors can not determine if an object
conforms a concept, they identify an object to a concept with a certain membership degree.
An important relationship between fuzziness and randomness is emerged from the similarity:
the fuzziness phenomenon on the ground, the universe U, can be described as a randomness
phenomenon on the sky, the power of U [|22]. Subjective reliability is the non-additive measure
since they are the fallen of probability from sky to ground, this is the core idea of the falling
shadow theory.

Logistic regression analysis (LRA) is a simple but effective method which is widely used in
classification, extending the techniques of multiple regression analysis to research situations in
which the outcome variable is categorical [3]. In stratification research, demographic research
and social medicine, the use of logistic regression is routine [8]. Some related works have been
done on logistic regression. A forward stepwise logistic regression analysis is conducted and the
results show that the peer ratings of collaboration can predict you belong to Learning Problem
group or Not Learning Problem group [10]. Split-sample, cross-validation and bootstrapping
methods for estimation of internal validity of a logistic regression model are compared, which
ends up with the recommendation of bootstrapping [12]. The number of events per variable
(EPV) in LRA has influences on the validity of the model, and it turns out that low EPV plays
a major role [9]. Yet these works only focus on the strategic level of logistic regression, deep
understanding hidden behind this common model should be mined.

In artificial intelligence, the regressed curves can be regarded as membership functions. The
selection of the types of regressed curves decides the quality of curve fitting partially. Logistic
regression is fitted by the logistic membership function. In this article, we will expand the
discussion about logistic regression based on factor space theory and fuzzy sets which can present
a relatively different state from before.

The paper is proceeded as follows. We introduce the types of membership functions in Section
2. The logistic membership function is put forward in Section 3. In Section 4, logistic regression
based on the factor space theory is discussed further and an algorithm is proposed accordingly.
In Section 5, an example is used to identify the effectiveness of the proposed algorithm. Finally,
a brief conclusion is made in Section 6.

2 Type of membership functions

Definition 1. A fuzzy subset A defined on universe of discussion U is a mapping pu4: U—[0,1],
wa(u) is called the membership degree of u with respect to A [23].

From Definition 1, two fundamental meanings are revealed: firstly, a fuzzy subset stands for
the extension of a fuzzy concept, it is a milestone of intelligence mathematics; secondly, a fuzzy
subset builds a bridge to step over the gap between quantitative and qualitative phenomena, it
was the main bottleneck of information revolution. While the falling shadow theory can provide
a deeper mathematical foundation for the revolutionary change [5,6,18]. Definitions 2, 3 and 4
are listed to show how the falling shadow of a random subset is generated.

Definition 2. Let (U,B) be a measurable space. (P(U),B) is called a super-measurable space
defined on (U, B) if (P(U),B) is a measurable space.

Definition 3. Given a probabilistic field (Q,F,p) and a super-measurable space ((P(U),i}) on

(U,B). A mapping & Q — P(U) is called a random set if E1(A) = {w € Q| E(w) € A} € F
whenever A € B.
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A probability distribution can be induced on B from p on F through the mapping &,
P(A) = P(§71(A)), A€ B,
which makes (P(U), B) a super probabilistic field [19].

Definition 4. Given a super probabilistic field (P(U), B) and a random set £ : €2 — P(U), we
call a fuzzy subset A¢ on U the falling shadow of & if 4, (u) = P(w | u € £(w)) for all u € U.

It is revealed in Definition 4 that ua, can be viewed as the covering function of a random
set £ on U. The random set is called clouds, and the fuzzy set is called the falling shadow
of the clouds. The thicker the cloud, the higher the darkness of the shadow of the cloud [19].
Meanwhile, according to Definition 1, p14, is also the membership function with respect to fuzzy
subset Ae.

Definition 5. A membership function j4, is also called the possibility distribution of a concept

Ac¢on U .

Possibility varies from probability. According to Definition 5, possibility stands for the cover-
ing chance of £ to u and it does not hold exclusiveness; while probability holds the exclusiveness
and stands for the chance of monopolization [20].

Theorem 1. Let U = (—o0,+00) be the one dimensional state space. Given a random interval
r with falling shadow pa, let ¢ be the left extreme point of random interval r, then ( is a random
variable defined on (U, B). And the possibility distribution of the concept A is the same as the
distribution function F(u) of ¢ : pa(u) = F(u) = P(¢ < u).

Proof: Given probabilistic field (2, F, p), measurable space (U, B) and super-measurable space
(P(U),B).
Since r is a random set, then
r A ={we|r(w)eA}eT
whenever A € B.

Because ( is the left extreme point of r, then for each w € (), there exists § € B, which makes
r(w) € A= ((w) € B.

Since ((w) is a real number on the interval (—oo,400), according to the definition of random
variable [21], it is obvious that ( is a random variable. And

pa(u) = P{w|uerw)}=Plw|{(w) <u} =P <u)
O

From Theorem 1, we can distinguish possibility distribution from probability distribution and
combine the two terminologies by means of density function and distributed function respectively.

The membership function p4 determines the extent that u belongs to a concept A. For
one concept, different types of membership functions exhibit different membership degree for a
certain point u, making it necessary to clarify which type of membership functions should be
chosen accordingly.

Definition 6. A is a fuzzy subset defined on universe of U whose membership function is p 4.
If pa(z) > min{pa(a), pa(b)} for any a < z < b, then A is a convex fuzzy subset [4].
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A convex fuzzy set divides A into five parts with four points =, IT,u™,u™ (I” <IT <u~ <
+).

k= (—00,l"], 1=(",I7], t = (l+,u_], u= (u_,u+], v = (u+,+oo).

pa =0 when z € korz € v, pug =1 when z € t. (I7,ua(l7)) and (u™, ua(u™)) are the
inflection points.

Definition 7. We call | 1| and | u | the lower and upper interim length respectively.

Even though the shape of membership functions is variable with countless changes, the es-
sential variations focus on the two interim periods. The length of interim reflects the degree of
fuzziness with respect to a membership function, the narrower the length of interim, the more
precise the representation of a concept. For ease of simplicity, we only discuss the membership
function on the left fuzzy interval 1 formed by the distribution of left extreme point ¢ on the
interval. There are three common types of probability density functions of {: uniform type,
cosine type and normal type. Due to space limitation, only uniform distribution of ( is displayed
here to show how the membership function is generated.

For example, ¢ is uniformly distributed on fuzzy segment (I~,I"], the probability density
function of ( is

Filz) = ﬁ v e (1],

According to Theorem 1, the membership curve of the concept on this interval is

pale) = P <) = 5 )

It is a straight line ranging from 0 to 1 on fuzzy segment (I=,17].

Curve fitting is the foundation of optimization, the quality of fitting depends on whether the
curve chosen is appropriate or not. In this article, we introduce another type of membership
function which is frequently used in classification but lacking deeper understanding, as well as
expanding the discussion on it from the viewpoint of factor space.

3 Logistic membership function

Let v be the random variable defined on U, indicating attribute x. And let y be the indication
variable of concept o with the extension A defined on U, which takes value 1 when u € A and
0 else. Denote P, = P{y = 1|y = z}, which is the possibility distribution of the concept A
with respect to the variable x. To estimate the possibility, use the maximal likelihood principle.

Consider a series of sampling points (x1,y1), - , (Zm, Ym), the likelihood function is as follows:
L=T[Prc- Pt 2)
i=1

It is not easy to calculate the derivative, put logarithm on it and get the new likelihood
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function:

L= anP% — P, v
(yiln Py, + (1 — yp)ln(1 — Py,))
m (3)

(yi(InPy, — In(1 = Py,))) + > In(1 - Py,
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Since Iny £ +- varies on the interval [0, +00), also being related to the attribute z, we define
lnlfi,z =ax + b, then P, =

m And Equation (3) can be transferred into

m m

L= Z(yi(am’i +0b)) — Z In(1 4+ eaith), (4)

i=1 =1

Maximize L so that a and b can be achieved. This is an optimization problem and some
strategies solving this type of problems such as gradient descent |?] can be applied.

Definition 8. The logistic regression function is defined as:

1
1+ e—(alx+d)

P(x;a,b) =

x,ac€ R", a'x =ayz; + -+ apr,. When n =1, ¢(z;a,b) = m; o(x;1,0) = H%

It is obvious that this method of estimating a and b is kind of complex, while simplicity
is what we pursue eventually. Another method which can transfer the problem into a linear
problem will be introduced in the next section.

Since Py(z) = m is central symmetric with respect to the point (—g, 3), we can get

2b 1 1

P Py(—— — = :
A@) = Pa( a T) = 14 e—(a(=%—2)+b) 1+ ewwth

And it is easy to know

1 1
1+ e—(az+b) + 1 + eax+b =

Py(x) + P-a(z) =

With this property, the logistic regression function P(z) = TM can be seen as the logistic
membership function. And this property is available among another three types of membership

functions referred in Section 2, the details of which are omitted here.

Definition 9. We call P(z) = the logistic interim function.

1
Tre—at—2)

3.1 Logistic regression in risk attributable factor space

The factor space theory paves the way for logistic regression since some concepts find their
footholds in the factor space, which contributes to the better understanding of logistic regression.



The Logistic Regression from the Viewpoint of the Factor Space Theory 497

Definition 10. A factor space defined on universe of discussion U is a family of set ¥ =
({X(f)}(feF); U) satisfying:

(1) F
(2) X(0) = {0};
(3) For any T'C F, if {f|f € T} are irreducible (i.e.,s #t = s/ A\t =0 (s,t € T')), then

X({flfery =[] x5

fer

(H stands for Cartesian product)

= (F,V,\,5,1,0) is a complete Boolean algebra;

(4) Vf € F, there is a mapping with same symbol f: U — X(f).

F is called the set of factors, f € F' is called a factor on U. X(f) is called the state space of
factor f [22].

Denote I; = X(f;) and [ =11 X -+ X I,

Definition 11. Given an attribute space O = {0;,..i,|i; € I;,7 = 1,--- ,n}) in factor space
U = ({X(f)}fer={fi,,f.}); U). For each i; € I,

Oy iy,

is called a granule of X (F) [5]. Denote that g;,...;, = P{u|F(u) = 0j,...;, },
P={q.i,li;€l,j=1,---,n}

is called the probability distribution of attributes.

Assumption 1. X (f1), X(f2)---,X(fn) are all partial ordered sets, it means for one attribute
fi whose range of values is {i;,,%j,,- -+ ,%j.}, 15, < ij, <--- <1ij is always correct. It should be
clear that if there exists two granules 0;...1...1 and 01...3...1, granule o01...0...1 is anyhow certain to
appear. Then we naturally suppose that P is convex.

A convex probability distribution of attributes P is called the background distribution with
respect to universe U [7].

Definition 12. A factor space ¥ = ({X( )} re iU ) is called a risk attribute factor space if

F ={f1,--, fn: fns1}, where f1,---, f, stand for attribute factors and f, 41 stands for a risk
factor with binary attribute space X (fn4+1) = {1,0}.

Given a group of sampling points on I x {1,0}:
S ={(@1is s Tnis Yi) }i=1, m)
For (il, e ,in;inH) € I x {1,0}, denote

T T =11, s Tpg = Tns Yt = Intl
q’il"'inin+1 = ’ { ’ ! : ’77:/7/ - s } ‘ (5)

It is obvious that Zil Zln Zin+1 Qiy--vining1 = L.

Definition 13. Q = {i1, - ,in;int1 € I x {1,0} | Gi,inin,, > O} is the support set of Q =
{iyinings }in o sinsine1)€Ix{1,0}-
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In the risk attribute factor space U, logistic regression is mainly based on the support set Q.
While the condition that g;,...;,i,., = O still exists and transformation used to handle it will be
discussed in the final part of this section. Also, the definition of the logistic membership function
fitted out through logistic regression get updated in .

Definition 14. The membership function of illness a:

1 1
(X) - 1 _|_ 6_(90+91$1+"'+9n1'n) - 1 _|_ e*HTX7

where 8 = (0g,01,---,0,)", X = (1,21, -+ ,2,)". The parameters 6y, -- ,60, are called risk
attribute coefficients of factors.

The bigger the coefficient 6;, the more important the factor f; on risk-increasing.

Definition 15. Let o be a concept with extension A C U and intension O C X (F), we call
conditional probability P{u € A|F(u) = 0;,...;, } the possibility of concept o under o, ..., .

Remark 2. The difference between possibility and probability is clear again. Since possibility
is equal to the membership degree of the factorial configuration with respect to concept «, the
logistic membership function of illness « is

Piyin = P{u € A|F(u) = aj,...i,, }
:|{t|331t=i1,"',xntzin;ytzlﬂ (6)
|{t|x1t:i1)"'7xnt:in}’ ’

Also, the probability corresponding to possibility p;,...;, is

Qiv-inint1=1 = P{u S A‘F(U) = Oi1~~'in}p{F(u) = Oil"'in}
[ {t @ = in,e s = insye = 1} | Q
- .

It is obvious that

D Divein Y Girininr=1- (8)

Then the approach to estimate 8 through logistic regression is developed as Algorithm 1, and
the membership degree for the unknown samples can be calculated.

Algorithm 1 Logistic Regression Algorithm

1: Given sample points S = {(z14, -+ ,Tni;¥i)} (1=1,---,m).
2: For ‘ {t\xlt:il,--~ ,a:m:in} ’ >0 (il el - iy GIn) :
3:1f [{t|ye =1} |[>0and | {t |y =0} |> 0, then
4: calculate F;,...;,
5: let
Yii-in, = lnl*}%'ilu.in
6: else
oy Htye=1}]+05
Yir-win = Mgy =030 [
8: end if

9: Set Yi,...i,, = 0o + 0191 + - - - + Oy, do linear regression to get the coefficients 6y, 0y, - - - , Oy
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4 Example

To show how the factor space theory is imbedded into logistic regression, in this section, an
example calculating the membership degree of breast cancer using Algorithm 1 is considered.
The data extracted from [2] are shown in Table 1 and Table 2. There are 1896 samples in total
which form the universe of discussion U. Four attribute factors fi, fo, f3, f4 are considered and
each factor is a categorical variable whose set of value is I; = {0,1,2},1» = {0,1,2,3}, I3 =
{0,1}, 14 = {0,1,2} respectively. The meaning of these coded numbers are shown in Table 4.
Then the factor space W = ({X(f)}(fep=fi.fo.fs.f); U) involving 72 different granules o, ...i, of
X (F) can be established. The risk attribute factor space ¥ = ({X(f)}( ); U) is
also confirmed, where X (f5) = {1,0}.

The data must be processed before using Algorithm 1. For the background distribution P,
there are some granules whose ¢;,..;, = 0 which means no samples are included when f; =
i1, , f4 = 14, then those granules should be deleted. For some granules, the samples are very
small and there is little meaning to consider them, so the granules whose total samples are less
than 5 are deleted. Hence 33 granules remain and the samples decrease to 1837. Algorithm 1 is
applied to the 1837 samples and we can get the membership function of breast cancer as follows:

fEF=F1,f2.f3,f4:f5

1
(X) = 1 n e—(0,19x1+0.24x1+0,36x3+0780x4_0.75) . (9)

Equation (9) represents a hyperplane in five-dimensional space. Although the interim still
exists, we ignore it on account of the complexity. The estimated membership degree for each
granule can be calculated. Table 5 depicts the real possibility F;;...;,, the calculated possibility
P(X;) and probability g, ...i, is=1. Then Equation (8) can be verified easily:

> Piiy = 185227, > iy iy is=1 = 0.4899.

In Table 5, the rows that the difference between P, ...;, and P(X;) are over 0.2 are marked
in red, only four granules 13th, 16th, 21st and 32nd are included. Since membership degree is
estimated through linear regression, it is necessary to compare y;,...;, and lnli(j)((;()i)7 Figure 1
shows the differences of their values. The circles represent the real differences between y;, ...,
151(3)((;()1)
test. The vertical line segments represent the 95% confidence intervals of random residuals. It is
obvious that the confidence intervals of the 16th, 21st and 32nd cases don’t cover 0, yet not far
away from 0. Errors from different angles indicate that logistic regression is applicable in this
example.

From Equation (9), we know that 6; (i = 1,2, 3,4) is 0.19,0.24, 0.36, 0.80 accordingly. 6; (i =
1,2,3,4) are all positive numbers which means the risk of having breast cancer will grow when
the coded number of factor 7 gets larger. This is in accordance with the existing knowledge: the
risk of having breast cancer will become larger if girls get their first period at a younger age;
nulliparous women and those who give the first birth when they are older will have higher risks of
having breast cancer; doing previous breast biopsies! means you are suspected of having breast
cancer, the more you do, the larger the chance of being suspected will be; the risk of having
breast cancer will grow if the number of people with breast cancer in near relations goes up.
This conclusion verifies the efficiency of the logistic regression from another perspective.

and In

Since least-square estimation is applied here, it is necessary to do parameter

A biopsy is a medical test commonly performed by a surgeon, interventional radiologist, or an interventional cardiologist
involving extraction of sample cells or tissues for examination to determine the presence or extent of a disease.
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5 Conclusions

The possibility in logistic regression is equal to the membership degree in factor space. Con-
nection between the two sides is established through the membership function. The paper shows
that the factor space theory gives logistic regression a relatively different state. Meanwhile, lo-
gistic regression forms another foothold of the factor space theory in the big data era. This is
of great meaning since it gives us the reason and motivation to explore the factor space theory
deeply.
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Appendix

Table 1: Detailed distribution of cases and their matched controls in all strata defined by cross-
classifying the four risk factors

Risk factor category

Age Mothers
Age at  at first Previous plus sisters  No. No.
menarche live breast with breast of of
birth  biopsies cancer cases controls
0 0 0 0 14 27
0 0 0 1 3 1
0 0 0 2 0 0
0 0 1 0 3 1
0 0 1 1 1 0
0 0 1 2 0 0
0 1 0 0 54 85
0 1 0 1 20 12
0 1 0 2 1 1
0 1 1 0 5 5
0 1 1 1 2 0
0 1 1 2 0 0
0 2 0 0 81 100
0 2 0 1 18 20
0 2 0 2 3 0
0 2 1 0 7 12
0 2 1 1 4 2
0 2 1 2 0 0
0 3 0 0 27 14
0 3 0 1 12 7
0 3 0 2 1 0
0 3 1 0 0 2
0 3 1 1 1 0
0 3 1 2 1 0
1 0 0 0 27 56
1 0 0 1 8 7
1 0 0 2 1 0
1 0 1 0 1 4
1 0 1 1 0 0
1 0 1 2 0 0
1 1 0 0 112 173
1 1 0 1 27 12
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Table 2: Table 1 - Continued

Risk factor category

Age Mothers
Age at  at first Previous plus sisters  No. No.
menarche live breast with breast of of
birth  biopsies cancer cases controls
1 1 0 2 4 0
1 1 1 0 14 4
1 1 1 1 1 2
1 1 1 2 0 0
1 2 0 0 187 174
1 2 0 1 41 20
1 2 0 2 10 1
1 2 1 0 11 10
1 2 1 1 5 0
1 2 1 2 0 1
1 3 0 0 41 47
1 3 0 1 15 5
1 3 0 2 4 0
1 3 1 0 4 5
1 3 1 1 1 0
1 3 1 2 1 0
2 0 0 0 9 15
2 0 0 1 3 2
2 0 0 2 2 0
2 0 1 0 1 1
2 0 1 1 0 0
2 0 1 2 0 0
2 1 0 0 43 44
2 1 0 1 14 5
2 1 0 2 1 0
2 1 1 0 3 2
2 1 1 1 2 0
2 1 1 2 0 0
2 2 0 0 53 52
2 2 0 1 9 8
2 2 0 2 2 0
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Table 3: Table 2 - Continued

Risk factor category

Age Mothers
Age at  at first Previous plus sisters  No. No.
menarche live breast with breast of of
birth  biopsies cancer cases controls
2 2 1 0 3 1
2 2 1 1 2 1
2 2 1 2 0 0
2 3 0 0 17 4
2 3 0 1 4 3
2 3 0 2 1 0
2 3 1 0 3 0
2 3 1 1 3 0
2 3 1 2 0 0
Table 4: Levels of the risk factors
Risk factor Range Coding
< 12 2
Age at menarche 12-13 1
> 14 0
< 20 0
. . 20-24 1
Age at first live birth 95-29(or nulliparous) 9
> 30 3
No. of previous Oorl 0
breast biopsies >1 1
No. of mothers 0 0
plus sisters 1 1
with breast cancer >2 2
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Table 5: P, ..., P(X;) and g4, ...i,i5—1 for 33 granules

Risk factor category

Mothers
case Age at Previous plus sisters P, P(Xi)  Gijigis=1
number menarche breast with breast
biopsies  cancer

1 0 0 0 0 0.3415 0.3207  0.0076
2 0 1 0 0 0.3885 0.3739 0.0294
3 0 1 0 1 0.6250 0.5711 0.0109
4 0 1 1 0 0.5000 0.4624  0.0027
5 0 2 0 0 0.4475 0.4304  0.0441
6 0 2 0 1 0.4737 0.6275 0.0098
7 0 2 1 0 0.3684 0.5211 0.0038
8 0 2 1 1 0.6667 0.7081 0.0022
9 0 3 0 0 0.6585 0.4887  0.0147
10 0 3 0 1 0.6316 0.6806 0.0065
11 1 0 0 0 0.3253 0.3640 0.0147
12 1 0 0 1 0.5333  0.5606 0.0044
13 1 0 1 0 0.2000 0.4519 0.0005
14 1 1 0 0 0.3930 0.4200 0.0610
15 1 1 0 1 0.6923 0.6175 0.0147
16 1 1 1 0 0.7778 0.5105 0.0076
17 1 2 0 0 0.5180 0.4781 0.1018
18 1 2 0 1 0.6721 0.6713 0.0223
19 1 2 0 2 0.9091 0.8199 0.0054
20 1 2 1 0 0.5238 0.5689 0.0060
21 1 2 1 1 1.0000 0.7463 0.0027
22 1 3 0 0 0.4659 0.5368 0.0223
23 1 3 0 1 0.7500 0.7210 0.0082
24 1 3 1 0 0.4444 0.6254  0.0022
25 2 0 0 0 0.3750 0.4097  0.0049
26 2 0 0 1 0.6000 0.6074  0.0016
27 2 1 0 0 0.4943 0.4675 0.0234
28 2 1 0 1 0.7368 0.6619 0.0076
29 2 1 1 0 0.6000 0.5585 0.0016
30 2 2 0 0 0.5048 0.5263 0.0289
31 2 2 0 1 0.5294 0.7124  0.0049
32 2 3 0 0 0.8095 0.5843 0.0093
33 2 3 0 1 0.5714 0.7580 0.0022
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Residual Case Order Plot
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Figure 1: The differences between y;,...;, and ln%



