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Abstract

In order to investigate and decide that the vehicle asymptotic vibration stability and improved
comfort, the present paper deals with a fuzzy neural network (NN) evolved bat algorithm (EBA)
backstepping adaptive controller based on grey signal predictors. The Lyapunov theory and back-
stepping method is utilized to appraise the math nonlinearity in the active vehicle suspension as well
as acquire the final simulation control law in order to track the suitable signal. The Discrete Grey
Model DGM (2,1) have been thus used to acquire prospect movement of the suspension system,
so that the command controller can prove the convergence and the stability of the entire formula
through the Lyapunov-like lemma. The controller overspreads the application range of mechanical
elastic vehicle wheel (MEVW) as well as lays a favorable theoretic foundation in adapting to new
wheels.

Keywords: Evolved control, MEVW, Nonlinear Lyapunov method, Adaptive fuzzy control,
artificial intelligence tool, Grey DGM (2,1) model.
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1 Introduction

With the prompt development for the automobile industry, the security of automobiles has been
remarkably improved. More and more car manufactures have begun to evaluate noise, vibration and
irregularities [1, 2]. So far, a lot of work has been done to improve driving comfort, including the
development of active steering, controlled steering and steering motors [3, 4]. As an indispensable
part of a vehicle, suspension plays an important role of improving driving comfort as well as driving
performance [5, 6, 7]. The key function is a focus to transfer power as well as torque between the road
and the vehicle. Comparing with accustomed passive vehicle suspension, the active vehicle suspension
is usually necessary to maintain the balance between vehicle characteristics, not merely to separate
the vibration resulted from different driving environments, and it also to maintain favorable contact
with roads [8]. Semi-active vehicle suspension and active vehicle suspension can alter the damping
and stiffness coefficient at the same time. Although they require a lot of external power source to
operate, they have the potential to enhance the overall performance in the vehicle and are therefore the
most effective [9, 10, 11]. Many researchers have utilized it to evaluate active control of suspensions.
Nowadays, the research of active vehicle suspension system control can be approximately differentiated
into two categories: The first category includes intelligent control based on precise modeling, which
mainly includes robust control, and optimal control, and neural networks, and adaptive control that
could settle the nonlinear problems and enhance vehicle control manifestation. However, it should be
pointed out that there is no completely known system model, and the intelligent control strategy is
still a challenge. It is necessary to develop another control system which is known as a free model,
and it does not rely on the system model. This control of the free model is expressed as unclear
control when the system is adjusted and controlled based on the expertise and the experiences of
experts [9, 20, 21, 22, 23], which was supported by predictive fuzzy technique with performances in
parallel distributed control. Also, the robotic techniques with the distinct objects for the environ-
ment has been highlighted in the LMI and neuro-fuzzy modeling even for the applications in chaos
and math nonlinearity. This scheme avoids tedious and inconvenient modeling labor and realizes the
application for human knowledge, but it neglects the beneficial information in the system, and the
accuracy is not often sufficient. Rather, modern active vehicle suspensions combine the benefits of
these new types of control (for example, adaptive control) with conventional control strategy. This
scheme uses reverse thought to estimate problems and uses adaptive schemes to solve unknown factors
of a particular system. Control laws are easier to understand and adapt with the adaptive rollback
control strategy. Active vehicle suspension can solve difficult limitations [24], and most existing active
vehicle suspension systems are utilized with conventional pneumatic wheels. Simplified stiffness and
damping are utilized to replace the wheel without pondering the actual performance for the wheel.
The algorithm might be easy, but it is far from reality. These neural systems are composed of sim-
ple compositions working in parallel. Those compositions are inspired via sensory natural systems.
Therefore, the network is utilized to approximate the nonlinear frame, making it as close as possible
to the neural network (NN). In order to simplify the control problem, these LDI connections (using
differential linear inclusion) is utilized in the present paper to control the stability in a large nonlinear
frame. The Evolved Bat Algorithm (EBA) was developed, which is known to be suitable for solving
optimization numerical problems for swarm intelligence.

Simultaneously, a new type of mechanical elastic vehicle wheel (MEVW) has been developed, which
has the benefits of being explosion-proof as well as light weight, and have attracted widespread atten-
tion. Relevant studies have shown the performances with artificial intelligence tools [25, 26, 27, 28].
The accustomed control strategy is difficult to adapt to the vehicle suspension system prepared with
MEVW. Although these vehicle wheels are mounted in an active vehicle suspension, their high radial
strength also make it difficult to guarantee the performance. Generally, work on control strategies for
improving vehicle comfort on such wheels (especially active vehicle suspensions) is rarely factualized
on control strategies. It is necessary to consider the non-linear system and perform certain operations
in this area with certainty. Although great efforts have been made for nonlinear and non-safety sys-
tems such as adaptive control, and sliding control, and fuzzy control, as well as grey system methods,
it is always necessary to take into account the math nonlinearity and uncertainty to reflect the sensor’s
actual movement. This makes it difficult to implement control strategies. According to the model’s
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predictive control idea, we can control whether the prospect conditions can be met in advance. Accus-
tomed forecasting methods take these factors into account, which is a major problem [29, 30, 31, 32].
These include statistical regression, and Holt-Winters method, and ARMA model [33, 34]; however,
these are not simple to apply to actual technologies. Gray’s system theory rarely uses information
about data to find mathematical relationships between factors and then predict them. The DGM gray
model (2.1) is particularly adequate for depicting non-monotonic vibration sequences and is widely
utilized in signal vibration processing [35, 36]. Therefore, this study uses the gray DTM model (2.1)
to provide predictive information that the controller could make the best or most effective use for the
vehicle suspension system. Shortly speaking, the key content in the article is to put forward a new
type of mechanically elastic wheels to guard against tire explosions, and to devise effective control
measures to equip these new wheels with active vehicle suspension. By using evolved bat algorithm
combined fuzzy theory, the control system can be approximated more effectively and efficiently. Un-
like the rest intelligent swarm algorithms, the advantage of the EBA combined fuzzy theory has one
measurable factor (called an intermediate parameter) which needs to be determined. The choice of
another medium judges the scale of the research steps in the evolutive process. In order to report
the actual situation, the present study evaluated the non-linearity and uncertainty of the wheels and
suspension. With this in mind, Taylor series are utilized to enlarge the nonlinear utterances of damp-
ing force and spring force under unknown measurable factors. Thus, we use adaptive recoil control
and Lyapunov theory to reckon these unknown measurable factors and tail the ideal spring motion for
better performance. Taking into account the additional correlation of these ideal vehicle suspension
motions, the gray signal predictor is utilized to design prospect vehicle suspension motion. Lastly, the
simulation of the numerical results verify the reliability as well as effectiveness for the control method
proposed in the study. The rests in this article are organized as the following. The description in the
system is given in the second part. The existence of the modeling errors provides sufficient conditions
for nonlinear systems and guarantees partial asymptotic vibration stability in section III. Examples
with simulation calculations explain the possibilities of our method of section IV, and some speculating
observations at the end of the paper.

2 System Description

As shown in Figure 1 (a) and (b), the mechanical elastic vehicle wheel (MEVW) is primarily
constituted by an elastic wheel (wire loop, rubber layer), a hinge and a hub group. The elastic wheel
is composed of a metal ring as well as a rubber layer. For simplicity, Figure 1(c) shows that when
the length 1 of the hinge group is slightly larger than the unloaded length, the hinge allows a certain
degree of radial motion; however, whilst the MEVW is loaded, these loads on the wheel will pass by the
hinge group. These distances between the spring wheel and the hub could be called the free movement
in the hinge group. The bottom is obviously deformed, and the top tends to shrink radially. Due

Figure 1: MEVW system.
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to this structure, the joint group has only one pulling force. The MEVW has been tested to achieve
these characteristics, and the load has been increased from 0 kN to 20 kN. Figures 2(a) and 2(b)
show the test equipment and results for 2 kN step and vertical strain, respectively. Figure 2(b) shows
the vertical deformation (about 3mm) of the MEVW during unloading. The main reason is MEVW
is influenced by gravity force, and the hub could move smoothly for certain distances. Upon these
hinge groups were extended to its maximum extent, a load was employed and these wheels began
to support those weights. The stiffness characteristic in MEVW is evidently not linear. The active
vehicle suspension is equipped with mechanical elastic vehicle wheels, and the half-car model has been
utilized to depict these systems. The damping forces are considered to be non-linear and unknown
numbers. The systems measurable factors were listed in Table 1.
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Figure 2: Relationship between deformation and load of MEVW.
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Figure 3: Active vehicle suspension and MEVW control model.

Table 1 Nomenclature.

Symbol Description

M Mass of car body

mz mz Mass of front or rear MEW

z Vertical displacement of car body

z1, 2 Vertical displacement of front or rear MEW
Iy Moment of inertia around the centroid

h Pitch angle of car body

a,b Distances between centroid and front or rear suspensions
Fi1, Fkz Spring force of front or rear suspension
Fc1, Fe2 Damping force of front ar rear suspension
ux, uz Farces gensrated by front or rear actuator
Fi1, Fiz Tire forces of front or rear MEW

v Speed of vehicle

qr, q2 Rozd profiles

The initial condition is determined in these positions in which there is no force for the vehicle
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suspension and tire. The orientation of the axis is shown as seen in Figure 4. These dynamics could
be depicted as the following [37]:
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The wide practical usage of the theoretic results presented for the math nonlinearity of vehicle
suspension and MEVW has been evaluated, and the active vehicle suspension system prepared with
MEVW is modeled. The vehicle suspension force as well as tensile strength of MEVW have been
expressed through experimental analysis and Taylor series. In the next part, we will study the design
of an active landing gear controller that conforms to the MEVW. Vehicle suspension system control
comprises ideal vehicle suspension motion generator, adaptive feedback control law, and gray signal
predictor. The signal controls the movement of the vehicle suspension to follow ideal conditions, and
the signal predictor predicts the required conditions based on the pre-regulated control law. The
control structure is shown in Figure 4. To stabilize the car fuselage, the present study assumes that
there is an ideal x14 and x34 vehicle suspension motion. While the vertical actual movement as well
as inclination (z1,z3) in the vehicle could detect the required movements, driving comfort could be
warranted. First, let us stint the tracking errors.
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Figure 4: The design of controller in active vehicle suspension and MEVW.

It is necessary to introduce Lyapunov’s positive definite function (PD) for the system state so that
the tracking error gradually approaches zero when the derivative is considered as negative definite
(ND). This has the chosen function.

V(ey, es3,02,04) = €181 + €383 + 0207 + 0404

e1(X1d — X2) + €3(X3qg — X4) + 0202 + 0404

€4 I).(m — (X4 + k17 — fiz]] +e;3 IXM — [X’3d - k3€3 — 154]] 4+ 0207 + 0404

—kq1€2 — kse2 + 5y(ey + 33) + d4(e3 + dg)
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According to Lyapunov’s ND theory, for ND of equation (2), the tracking error and the estimation
error tend to zero. So, it is essential to present a definite positive Lyapunov function (PD) which is
related to the state to make it function step by step. If the derivative of the negative definite (ND)
is zero, it is the selected to function. Theoretically, this shows the possibility of control and the con-
vergence of tracking the errors. This completes the control signal and estimated measurable factors
of the active vehicle suspension according to the MEVW and general controlling law.

To actually give birth the necessary force of the vehicle, a hydraulic vehicle suspension was se-
lected. The generator of this system is composed in actuator, hydraulic source as well as hydraulic
electro servo valve. These pressure differences between these two are very large as illustrated in Figure
5. Both positions of the piston for the actuator are diametrically controlled via the hydraulic electro
servo valve. These oil hydraulic flows through the actuator as well as the flows generate forces for the
piston owing to these differences in tension. The resulting forces could then be counted. The above
strategy was designated to cause the vehicle suspension guide an ideal movement for accommodating
suspensions in difference. The following is an ideal sports layout. An ameliorated damping hybrid
control is provided that combines ground hook and cloud hook damping control to provide the desired
motion as indicated in Figure 6.
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Figure 6: Damping hybrid mechanism to track the ideal movement.
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To consider the NN model, S-layers by RY(q = 1,2,...,S) neurons in each layer, where z(k) ~
z(k —m + 1) is state math variables as well as u(k) ~ u(k — n + 1) input math variables. These
numbers in the layer are subjoined as an inscription to the denominations for the variables. So, the
weighted matrix in the qth layer would be written as W2. Then the final output in the NN model
could be referred to as follows:

(k)= W3 xS WIS xR (W P W < Z(K))) o)) 3)

In addition, according to the interpolation equation and method, the present study can acquire
x(k+1) = {Z Z n (k) (k)G(v YWD X[ [Z Z I : (k) (k)
ji=lognA 7 = A
GOVLPHW 2 x | z zk (k) ()G EHYW ' < ZERDD]-++++)}

7= J =1

_ szf (;()...;.I‘l;_ (BG5S WS WS ...V whHW' 'z (k)
= Zhv ()T, W W) Z(k),

The dynamics in the NN model could be rewritten by the passing LDI representation:

x(k+1) = f h(k)J Z(k) = f h (k){A,x(k)+ Bu(k)},
i=1 i=1 (5)

and J; is a constant matrix with the appropriate dimension associated with J,(W,1). In addition,
A; and B; are called partitions of J; which is relevant to these partition Z (k)T = [z(k)...x(k —m +
Du(k)..u(k —n+1)].

Herein, a model-based fuzzy controller is synthesized to stabilize the discrete-time nonlinear system.
IF x1(k) is M;; and ... and z,, (k) is M, THEN w(k) = kz(k),i = 1,2,...,1 (6(a))

where [ is the number of IF-THEN rules; and M;;(j = 1,2, ...,m) are the fuzzy sets.

The final amount produced in this fuzzy controller is deduced as the following;:

iwj(k)fo(k) B

u(k) == ==, (K x(F),
> w, (k) =

w, (k)

with w (k) :ﬁ%{ (x, (6)), I, (k)=
41 ZWJ,-(!T(-)
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where Mj,(x,(k)) is the rank of membership in x,(k) of M;,.In this present study, it has been also
supposed that w;) > 0 as well as in all Z}Il:l wji (k) > 0. So, l;j > 0 as well as of all 23'71:1 l;j =1of

all k.

3 Evolved NN modeling and Stability of Grey signal predictor

The desired ideal motion can be achieved through improved hybrid damping control. Note that
the hybrid attenuator is virtual, in fact, there is no need to design controls in practice, and the virtual
attenuation coefficient is given as a control signal. Compliance with control laws include error and
price tracking. In other words, it is ideal, and a true vehicle suspension with speed. It can design the
suitable signal. Only real signal z1;x1;x3; can predict x3 beforehand to even more improve driving
comfort. These DGM models (2.1) in gray system statement is utilized to devise predictors according
to little-known material (at least 4), in which the present study can be easily implemented on a
microcomputer. Assuming the number is n, this is a partialized motion sequence. When B = [p, ],
the DGM model (2, 1) can be depicted as follows.

1[1))(.[03(]() +pX[0)(]<) =q Bh=Y

—X'D](2) 1 2[]JXID](2J X'G’[Z) _XID}(])

’VX‘D](?»} 1 {z”ix‘m(i’») x0(3) - x©(2)
B Y

\‘_XIO][”] 1 {1[”){[0][;}] X[O)(n)_x!ﬂ?(n_l]

(7)
After the prediction is completed, the actual value of the signal will be measured at the appropriate
time. Since the movement of the vehicle suspension is strongly influenced by stochastic excitation,
they are difficult to guarantee sheer accuracy. While comparing these predicted amounts for the actual
value, upon the error has been acceptable, these errors are sent, on the contrary, another actual signal
are sent. Please note that these short-term status signals would not alter significantly. So, as shown
in the equation, 5 times the sheer differences between the previous signals and current signals are sets
whilst the error threshold are indicated in Equation (8).

~(0)

Xme1) X%m+1) —x‘U'(njl < 5/xO(n) —xO(n-1)|

%1

X0 (n) ‘ -(0)

XV(n+1) —x‘O'(nJ| > 5[x@(n) —xO(n—1)|

(8)

Next prediction of vehicle suspension motions z1, 21, 23, #3 add the measured value z(?) (n+1) to
the deletes 2(%)(1) and final stage of the numerical sequence z(9) (the distant right of the line vector)
to respectively yield a new numerical sequence, iterating the higher level steps for accomplishing these
metabolisms in grey DGM (2,1) model. Based on the dynamics of the NN model (5) with controllers,

x(k+1) = Zi 7, (), (k) H (k) + e(k)

=l =1

where H, =4,-BK,, R(x(k))=f(x(k).u(k)), e(k)=[R(x(k) —ith(k)f{ (k) H x(k)]

i=l j=1

and e(k) represents the simulation error between the NN model and its nonlinear system. If there is
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a definite and positive matrix P and there is a positive parameter k subsist such that the inequalities
are as follows:

H{PH, -P<0, (+x)HPH,-P+(1+x )iy, (PH; H, <0

9)

are satisfied for j = 1,2,....0; i = 1,2, ..., ¢ in which the A4, (P) denotes those maximum eigenval-
ues in P, the nonlinear system is thus asymptotically stable. Proof: in Appendix. The Evolved Bat
Algorithm (EBA) has been put forward on the basis of the bat echolocation system, which is worth
pointing out in nature [38, 39, 40]. Unlike other intelligent swarm algorithms, the advantage of the
EBA is that before using the algorithm to solve a problem, only one measurable factor (called an
intermediate parameter) needs to be determined. The choice of another medium determines the scale
of the research steps in the evolutionary process. This present study choses to air as a medium because
they are in the middle of origin is the presence in its live bat. The function of EBA could be indicated
into four short steps [41, 42]:

a. Initialization Step: These artificial agents are disseminated into the response space by stochas-
tically assigning coordinates to them.

b. Movement Step: The artificial agents are moved. A stochastic number is generated and then it
is checked if it is larger than the fixed pulse emission rate. If the result is positive, the artificial agent
is moved using the stochastic walk process z! = x‘fl + D, where z! signifies the math coordinate in
the i-th artificial agent for the t-th iteration; signifies the math coordinate in the i-th artificial agent
for the last iteration; and D is the distance which the artificial agent shifts in this repetition. Thus,
D = A.AT, in which X\ a state of affairs that does not change corresponding to the medium given of
the experiment; and AT € [—1,1] is a random number.A = 0.17 is utilized in our experiment because
the chosen medium is air. x’;R = B(Tpest — xt), B € [0,1], in which 8 a random number; xpes; signifies
the math coordinate in the near best solution found so far in all places for all artificial agents; and LEER
signifies the new math coordinates in the artificial agent after these actions in these stochastic walk
processes.

c. Evaluation Step: These fitness in the artificial agents have been counted by the updated to the
stored and user stinted fitness function near best solution.

d. Termination Step: The abrogation conditions are determined for deciding whether to go back-
wards into Step b or repeal output and the program the near best solution. The appraisal criterion
in order to determine the fitness in a bat has been judged a user stinted fitness numerical function.
A fitness numerical function has been introduced in the present paper to find the control force of
the controller and the collaborative positive symmetric definite matrix. Generally, intelligent swarm
algorithms require multiple numerical iterations for finding the next best solution. Therefore, the
same numerical experiment must be iterated some times to guarantee that the convergence is in nu-
merical results and they are consistent. For the choice of air medium material, because it adapts to
environments where bats live. The total size represents the number in artificial averages at the same
time utilized in the numerical solution area for each numerical iteration. The present study defined
the global scale as well as these numbers in possible solution so that they are sufficient to determine
the complex system measurable factors that are not yet clear in the application.

4 Example

If the time step is small enough, all states of the system are continuous functions of time. The
steps in DGM (2.1) should make the control stable and restricted. The controller is adapted to the
condition of receiving the gray signal of the predictor, and has adaptive recoil force control to follow
the motion generated by the ideal hybrid damping control to stabilize the motion of the MEVW
equipped with active vehicle suspension. To the control circuit controls the first check a DGM (2.1) is
correct, to simulate a numerical set of stochastic motion data using these trailers, the predicted signal
numerical sequence number 6 is set to 0.001 seconds, and Simulink the up step is then designed two
A standard tunnel (pulse and step) to demonstrate the effectiveness for the proposed control. These
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road links acting in the rear and facade wheels have certain time lag, which are corresponding to the
vehicle speed and wheelbase. The simulation measurable factors are shown in Table 2. It can be seen
from the figure. It could be seen in Figure 7 in which these differences between the prediction (2, 1)
of the GDM model and the accurate data is very small, especially when the trend is relatively small.
If the data changes significantly, the tracking error in the GDM model (2.1) will be slightly larger;
however, it can meet the requirements for engineering work. So, the the quality of being trustworthy
in DGM (2.1) can be assured. The weighted matrices in the output and the hidden layer have been
represented via W2 and W1'. After we train via the BP algorithm, the weighted factor could be
acquired in Equations as follows.

V= W x(k)+ W x(k -1+, ﬂ(k), v1 = Wlf T(vll)+W;1 T(Vé)+W321 T(v;). x(1+7%)= T(vf)

x(1+5) = (i (k)g, + 1, (g, v = b (k)g vy .
(10)

Moreover, based on renumbering these matrices, the NN model then could be alternated into LDI
representation as follows:

x(1+ k)= i B () {A x(k) + Bu(k)}

where
0 0 —0.0598 —-0.2443 0.0148 —-0.0214
4, =4, =4, ’ 10 = 1= »
1 0 1 0 1 0
0.1266 —-0.0039 —0.0451 —0.2657 0.0668 —0.2482
Bl 0 H 1 o
0.1414 -0.0252 0.0816 —1.2695
0 0o |
0 -0.1172 0.0266 —-0.0120
B =B,=--=B,=| |, B,= , B, = , B, = .
0 0 0 0

—0.0906 —0.1292 0.0147 —0.1025
B;; = > By = . B = . By = .
0 0 0 0

The pitch curve is given in Figure 8 (a). After 1 second, a next signal step by a 0.1 m amplitude is
displayed, and then the street height remains constant. The reaction to the active vehicle suspension
containing MEVW was observed throughout the process.

(12)

It can be seen from the figure. It could be observed in Figure 8(b) that during these pulling,
the active vehicle suspension system control force is displayed for 1 second. The maximum control
force of the front vehicle suspension has 11490 N, as well as these rear control forces decreases af-
ter around 30 minutes. 0.3 seconds to reach 14.790N. After a period of time, the vehicle stabilizes
again and the actuator control force is zero. Figures 8 (c) as well as 8(d) depict the vertical vibra-
tion displacement and upward movement of the body during stepping in. The adaptive recoil control
scheme without or with the gray signal predictor could result in the active vehicle suspension system
by MEVW follow the devised ideal motion well, while compared with the situation without control
(> 3s), it can Make the vehicle more stable (< 1.5) s

Although the efficiency of the adaptive regression control using the gray signal predictor has been
better than that of the accustomed predictor, the amplitude of the vertical movement of the vehicle
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in maximum is stifled by 7.44%, as well as the upward movement is reduced by 19% and 7%. In the
case of a gray signal predictor, the controlled motion range is smaller than that without a gray signal
predictor.

Table 2 program measurable factors.

Parameters Values Unites I Parameters Values Unites
M 730 kg a1 19,600 N*m

Iy 1230 kg*m? an 1 N*m?
m 40 kg ax 1 N*m?
m: 40 kg b2t 1290 N*s*m!
g 9.8 m*s? b2z 1 N*s2¥m?
a 1.1 m b2z 1 N¥ghm?
b 1.8 m d 0.003 M

v 10 m*sl Cagl 2000 N*g*m!
an 19,600 N*m! Caig2 2000 N*s*m!
alz 1 N*m? Calgy3 2000 N*s*m!
al3 1 N*m? Cakyd 2000 N*s*m!
bu 1290 N*g*m! ki 10 —

b1z 1 N*s2m? k2 10 -

b1z 1 Nkghm? - - -

—Random data
51 Bl |- - -Predicted data
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Figure 7: A numerical comparison between prediction made by DGM (2,1) model and random data.
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Figure 8: Vehicle suspension system control beneath the input step.

Figures 8(e) as well as 8(f) illustrate these vertical movements in the rear and front wheels under the
different controls. These showed that without control, the movement of the front wheels in maximum
is around 0.23 meters, while in the accustomed adaptive suppression control strategy, the movement of
the front wheels in maximum is reduced to around 0.17 m which can be further reduced by 0.13 m. The
vertical vibration movement in the rear wheels is decreased by 0.04 meters; however, these differences
between the adaptive rear stimulus is very small without and with the signal predictor. Through the
step-by-step recording, the control scheme could stabilize the car fuselage and retain the stability of the
vehicle’s steering. Generally, the overall performance will be better when using a gray signal predictor.

However, this limitation does not apply to the controller gain, because the overall impact of
power on the entire system is relatively small. Table 3 lists all the measurable factors utilized in our
EBA experiment. The actual application of EBA and its connection to the optimization problem
were discussed as follows. Like other intelligent swarm algorithms and scalable schemes, EBA requires
recursive operations to search the closest solution. Therefore, the same numerical experiment must
be repeated several times in order to check if the numerical convergence results would be consistent.
These numbers in trials which are listed in Table 3 purposefully is to furnish experimental results for
a series of studies using statistical schemes.

The present study selected a fixed number in iterations as the termination condition. These
materials utilized to propagate sound waves in the air because it is suitable for the natural physic
environment in which the bats are located. Besides, these total sizes denote the number of people
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Table 3 Measurable factor for EBA

Boundary condition for matrix positive definite matrix and 5. 5]
controller gains
Medium Material Alr
Number of Run 40
Population size 26
Number of Iteration 700

in the solution area at the same time in each iteration. The larger the population, the greater the
chances that the algorithm will find the closest solution. Yet, a large population claims more memory

resources as well as computing power.

Therefore, the present study fixes the population to 16 in

the numerical experiment. These numbers of possible solutions implemented by EBA for numerical
different varieties are indicated as seen in Figure 9.

The feedback gains and positive definite matrices with Lyapunov criterion could be referred to
the existing methodology [16, 17, 18, 19]. The solutions searched by the EBA have been decided as
feasible if the eigen values in Euation (9) are negative in all, the negative eigen values result in keeping
stable for the large the control simulation system. Therefore, Table 4 indicates 10 numerical samples

from feasible overall solutions searched by the EBA with the relevant eigen values.

Table 4 Samples in the acquired feasible numerical solutions by EBA with control svstem eigen values

) Eigen Values
Matrices P and K with 4, B, | with A, B,

3.2641 0.6081 2T [—-1.4172 -8.1912 -92384

Set 1 = . =
0.6081 0.9971 —0.1151 -2.1826] | |-1.7674
B (3.8752 0.3773] . [-16726 -12.9525] | [-7.6539

Set 2 = K=
10.3773 1.0645 | —0.2747 -16175 | | | -1.9006
P [3.9862 0.6328 &7 [-1.6705 —9.1133] | [-6.5002

S'E-t 3 = . =
| 0.6328 0.3880 | —0.2633 —19422] | |-1.0776
» (34095 0.3250] . [-14341 [—2.9977] | [-3.3554

Set 4 = LK =
| 0.3250 0.5086 | —0.0744 | —2.0886 -23777
» (46075 0.6311] _ . [-14033 [—9.0082 - 6.8969

Se‘t 5 = . =

’ | 0.6311 0.7700 | —0.3754 | —3.9219 -2.962

B (44938 0.6361 X7 [—1.4631 [—29.3484] | [-11.5857

S'E-t ﬁ = . =
| 0.6361 14047 | —0.7790 | —3.0169 - 22598
e (30719 0.0864 = 14645 [—396258] | [-6.3168

Set 7 = K=
| 0.0864 0.9208 | —1.9464 | —0.5657 || |-0.2100
» [2.7318 0.2748 2T [—1.3799 [-13.1626] | [-2.8163

Set 8§ = , =

0.2748 0.3832 | —1.4559 | -1.1711 ]| |-1.832

B [2.1372 0442 X7 [-1.7609 [-13.6180] | [-4.9761

Set 0 = =
04420 0.3884 | —0.9665 | —14539 | | |-1.0774
e (19452 0.1138] . [-13655 -1.2705] | [-2.6596

Set 10 = =
‘ 10.1138 04373 | 0.0301 -0.8623] | |-0.8972
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Fig. 9 Number of feasible solutions acquired by EBA in 40 runs.

5 Conclusion

This research proposes an active chassis control strategy for MEVW to enhance these driving
comforts in the vehicle and limit these movements in the vehicle body during driving on the road.
The theoretical basis for active vehicle suspension systems suitable for MEVW has been established.
First, a nonlinear mechanical model of MEVW is established through experimental procedures. In
this case, these nonlinear characteristics in the active vehicle suspension were evaluated at the same
time, as well as these half-car models were accomplished. According to the Lyapunov’s theory, a
control law is derived to appraise the damping and stiffness in the measurable factors and track the
ideal suspension. Then an hybrid improved attenuation control formula is put forward to ensure the
suitable signal acquired via the control law. The feasibility and stability in the system are certificated
by the Lyapunov-type theorem. In addition, a gray DGM model (2.1) is implemented in the controls
to predict the movement of the vehicle suspension in advance. The simulation results represent that
the formula could asymptotically stabilize the discrete-time nonlinear system through synthetic opac-
ity control. In seeking control system solutions, the benefits of EBA model also brings flexibility and
feasibility.
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Appendix

Let the Lyapunov function in the nonlinear system be expounded as

V (k) = z(k)T Px(k) (A1)

where P is a positive definite matrix. We thus appraise the backward difference in V(k) on the
trajectories to get

AV (k) = -V (k)Y (k +1) = x(k + D)7 Px(k +1) — x(k)" Px(k)

= {i Z h, (k);l_zj (k) H ,x(k) + e(k)}TP{Zp: Z h, (k)t‘_vj (F)H  x(k)+ e(k)} - x(k)r Px(k) (42)
=l ol i=1 =1 A2

Let

¢ 1 ¢ 1 _ _
Y>> m()h; (kg (kg (k)x ()" {H PH g — Pyx(k) = my + my +m3 +my
i=1 j=1a=1p=1 (A.3)
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Where,

‘Zzhz(k)h ()x(k)! (HE PH,; — P)x(k).
i=a j=f

m, = f ihi (k)h, (k) (lo)yx(k)" (H ; PH,,; — P)x(k)
f#arﬁ
= Z Zh (K)hy () (l)x (k)T {H ] PH,,; + H,, PH; —2P}x(k),
i< j=f
my = f ihf (k)h, (Ro)h, 5 ()x(k)" (H ; PH, ; — P)x(k)
ffa'j;éﬁ
= Z Zh (kYh; (k)h 5 (k) x (k)T {H PH 5 + H}; PH; —2P}x(k),

Iafj<ﬁ

¢
my=> Zh (k)i (k) (k)h 5 (l)x(le)" (H} PH .5 — P)x(k)

iza j#=f

= i i b, (k)h, (k) (l)h, (l)x (k) {HPH_, + H_ ,PH_—2P}x(k).

i<a j<ff

Therefore, we have
e -
Z > b, (k)h()h; (K)x(k) {-[H,-H, I'P[H, -H, ]+H PH_—P

7=
HGJPHGJ - Pix(k) <0 for j=p=1-,1; i<a<ég. (A.4)

For the similar phase
m3 <0 and my <0 (A.5)

Substituting (A.4) and (A.5) into (A.3) yields

>

J=l @

F — —
>y (B4 )y (30, (030" (HPHL, ~ P}x(R)
i (k) (k)x(k) (HZPH,, — P)x(k).
= (A.6)

M

Me ‘IM‘G

From (A.6) and (A.2), we have

AV (k) < Z i i (k)h, (k)x(k)" (HTPH,, - P)x(k)

i=1 j=1

+i i i (k) () tx(k) T Pe(k) + e(k)" PH, x(k)} +e(k)T Pe(k).
(A7)

Since P belongs to positive definite matrix, then it derives that

1 1 1 1
(k2 Hx(k) - & Ze(k)T P(KZH x(k)—x 2e(k)=0

= xx(k)" H PH,; x(k)— x(k)" H] Pe(k)— e(k)" PH,;x(k)+x 'e(k)" Pe(k)" =0
= x(k)" H, Pe(k)+ e(k)" PH;x(k) < xx(k)" H PH,x(k)+x " 'e(k)" Pe(k)" .
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Therefore, we acquire

AV (k) < Zj () A, ()x(k) {H PH,, - P}x(k)

0y j (), () (i x(k) HEPH x(k)) + (1+ 7 )e(k) Pe(k)
i

= fz (B)h,(E)x(k) {1+ HLPH, —P}x(k) + (1+ 5 e(k)" Pe(k)

h:]

Z B ()b, ()X {1+ R)HZPH, ~P}x(k) + (1+ &) A (Ple(h)T e(k).

From (A.8) we can get

AV (k) < f i h ()l (R)x(k) {1+ K)HPH, —P +(1+ &) Ay (P)H | H , }x(K) .
NS (A.9)

The nonlinear closed-loop system is asymptotically vibration stable.
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