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Abstract

Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life
and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly
over vast land sectors. Global warming has contributed to increased forest fires, but it needs
immediate attention from the organizations involved. This analysis aims to forecast forest fires
to reduce losses and take decisive measures in the direction of protection. Specifically, this study
suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud
computing technologies. To evaluate the repeatable information obtained from IoT sensors in a
time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing
layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally,
based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate
the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as
these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization
of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used.
Simulation of the implementation is done over multiple datasets. For total efficiency assessment,
outcomes are contrasted in comparison to other techniques.

Keywords: Forest Fire, Internet of Things (IoT), Risk Assessment, Forecasting

1 Introduction

Main environmental assets like forests present a critical role in maintaining world ecological
equilibrium|[1]. Also, forests are important for human life, with the development of extensive re-
sources such as timber, oxygen, and soil[2]. However, wildfire outbreaks have recently engulfed a
significant portion of forest land[3][4][5]. 71,499 forest fires were registered in the USA in 2017. In
2017, this resulted in almost 10 million acres (about 4 million hectares) of the protected surface be-
ing burnt'. Likewise, as per Canada’s National Wildland Fire Situation Report?, about 4,808 forest
fires occur per year in Canada, destroying about 2.2 million hectares of wild-cover. As a result, the
United Nations Office for Disaster Risk Reduction (UNISDR) announced that in many regions across

!Source: https://www.iii.org/fact-statistic/facts-statistics-wildfires
2Source: https://cwfis.cfs.nrcan.ge.ca/report
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Figure 1: IoT-Fog-Cloud Computing Framework

Figure 2: IoT Computing Devices
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Table 1: ToT Communication Technologies. (Abbreviations: UWB Ultra Wide band, IrDA Infrared
Data Association, NFC Near Field Communication)

Category Bluetooth RFID[NFC] IrDA Wi-Fi UWB

Rate 2.1 Mbps 106 Kbps to 424 Kbps 14.4 Kbps 1 Mbps to 300 Mbps 53 Mbps to 480 Mbps
Band 2.4 GHz 13.56 MHz 850 nm to 900 nm 2.4 G-5 GHz 3.1 GHz to 10.6 GHz
Distance 20-200 m 20 cm 0-1m 50 m 0-10 m

Network Nodes 8 2 2 50 -

Security 128 bits AES  High High High High

Power (mW) 1-100 <1 - >1000 <1

Cost(in $) 2-5 <1 - 25 20

the world, forest fire would be recurrent and impactful due to the rise in temperature and droughts
condition[6][7]. Also, wildfires have a dramatic impact on climatic environments, soil health, nutrients,
and biodiversity in general[8][9]. While researchers have put forward multiple definitions of wildfire,
this analysis integrates the widely adopted concept of wildfire by researchers globally[10][11].

Definition 1: Forest fires are characterized in terms of big flames and impacted by wind, uncon-
trolled, suddenly escalating and raging, having the potential to wipe vast forest area in quick time.

The detailed effect of wildfires is given in Definition 1. Despite several heterogeneous influences, the
causes of wildfires are divided into two groups[12][13]. They are, firstly, owing to illegal campfires, burn-
ing waste, reckless dumping of tobacco, and malicious arson activities, human-induced wildfires[14].
The second class involves wildfires caused by nature, which occur from natural causes[15]. Wildfires
are categorized in 3 specific forms based on severity, namely

(i) Crown fires are the severely impactful forest-fires that absolutely destroy vegetation,

(ii) Surface-fires includes light burn surface which has limited damaging effect

(iii) Field-fires that occur in dense humus, peat and dead plant aggregations.

Such wildfires spread steadily, and full containment is incredibly cumbersome. Massive wildfires in-
flict irreparable and severe harm every year, such as the loss of natural life, habitat devastation, land
erosion, air pollution, economic damages, and watershed devastations.

1.1 Research Objectives

The increase in forest fires underlines the critical need for the early identification of wildfires by
the planning, monitoring, and tracking of forest areas vulnerable to wildfires[16]. This can be done by
the incorporation of the enormous capacity of the Internet of Things (IoT) technology, fog computing,
big data analytics, wireless sensor networks (WSNs), and cloud computing[17]. Many IoT sensors are
embedded in forested surfaces in the proposed study, constantly tracking the ambient parameters for
forest-fire identification. Large amounts of information are produced, requiring real-time processing for
detection. Numerous benefits of fog computing, such as low latency, widespread regional variance and
minimal requirements for a network, were inspired to incorporate in the presented study. Figure 1[18]
demonstrates a 3-layer IoT architecture with numerous devices shown in Figure 2[19]. For prediction
purposes, Artificial Neural Network (ANN) has been incorporated. ANN presents several advantages
where data segments are involved. Prediction techniques based on the ANN model are significantly
enhanced as compared to other techniques. Furthermore, developing an effective cyber-physical system
using ANN formulates the core paradigm for the current research. Additionally, researchers around
the globe have claimed that the learning behavior of ANN is considerably accurate for parametric
prediction in real-time. Conspicuously, it has motivated us to carry out the current research on
learning behavior for heterogeneous parameters. The aims of the proposed research include:

1. Wild cover tracking for forest-fire triggering parameters (FTPs) utilizing different IoT devices.

2. Effective use of resources in a constrained environment for increasing the lifespan of the sensor
network.

3. Forest fire prediction-inspired by cloud computing platform for real-time data analysis.
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Table 2: Comparative analysis with State-of-the-art Work(Y Yes, N No)

Parameters Williams et | Goss et al. | Novkovic et | Vikram Black et al. | Proposed
al. (2019)[1] (2019)[2] al. (2021)[20] | et al. | (2017) [4] work
(2021)[21]
Application Do- | Forest fire de- | Wildfire detec- | Forest Fire | Wildfire Smart predic- | Novel system
main (AD) termination tion system Mapping detection tion system for wildfire
prediction
Major Contri- | Fir emergency | Wildfire pro- | Smart Fire | Monitoring IoT system for | Wildfire predic-
bution (MC) system tection system | Spread Esti- | Fire spread prediction tion system
mation
IoT Wearable sen- | Android appli- | Sensors RFID Wearable sen- | IoT
sor devices cation sors
Cloud Comput- | N Y Y Y Y Y
ing (CC)
Fog Computing | N Y Y Y Edge comput- | Y
(FC) ing
Alert  Genera- | N Y Y Y N Alert Based
tion (AT)
Prediction NA N TNS-Model N N Advanced ANN
Model(PM)
Data storage | Local Cloud Cloud Y Local cloud
(DS)
Data Min- | N NA Temporal RAKE tech- | NA Spatio-
ing Technique nology temporal
(DMT)
Security Mecha- | Y Y Y N N Y
nism (SM)
Visualization Y Y Y Y N Y
(VsL)

4. At elevated levels of wildfire vulnerability, emergency warning production is generated for im-
mediate response.

5. Simulation of the endangered land area during forest fires incorporating the technique of Self-
Organized Mapping (SOM)

Paper Structure The remaining of the article is formulated in several sections. Relevant literature
work about the control of forest fires is given in Section 2. The suggested system for tracking,
identification and prediction of wildfires is provided in Section 3. The equipped model’s experimental
simulations, effects, and performance analysis are seen in Section 4. Lastly, Section 5 ends the paper
with a particular significant potential path for science.

2 Related Work

The tracking, prediction, and calculation of IoT-fog-cloud-centred forest fire is a unique conceptu-
alization with tremendous potential. This section offers a short review of some significant literature
by various scientists using ICT in the modern area of wildfire monitoring. The bulk of these studies
concentrate on service quality and data protection with energy management strategies in applications
inspired by WSNs. Yoon et al.[22] also introduced a WSN developed to track wildfires, concentrating
on aspects of efficiency and efficiency. For fault-tolerant network configuration, reliable data pro-
cessing methods ensure data transmission to the base station. Bolourchi and Uysal[23] did related
studies in 2013. In wireless architecture, writers introduced a forest-identification mechanism utilizing
fuzzy-concept. The fuzzy technique for calculating the likelihood of forest fire is presented using five
membership functions, including humidity, smoke, light, temperature, and size. In 2014, an effective
architecture for time-sensitive forest-fire identification using mobile agents was proposed by Trivedi and
Srivastava[24] (MAs). In 2014, Zhao et al.[25] suggested a fascinating data cumulation using multiple
sensors based on the Dempster-Shafter principle and adaptive weighted fusion algorithm (AWFA) for



https://doi.org/10.15837 /ijccc.2022.3.4371 5

Table 3: Forest Fire Attributes

S. no. | Forest-Fire Triggering Parameters (FTPs) | Detail

1 temperature It is the temperatur value measured at the instant of time

2 Month It is the calender month

3 Precipitation It defines the quantity of rainfall and snowfall that a par-
ticular forest receives

4 Duff moisture code (DMC) It is the average moisture content of the given area

5 Relative humidity Amount of humidity at the particular instant of time

6 Initial spread index (ISI) It is the rate of forst fire spread of a particular area

7 Wind speed The rate of wind speed in the forest

8 Drought code (DC) It indicate the drought value of the given area in the
forest

9 Fine fuel moisture code (FFMC) Fuel content of the given area

the wildfire warning method. Ulucinar et al.[26] suggested a smart framework of forest fire detection
in which temperature and humidity are comprised of sensor nodes. In addition, a temperature-based
fire detection algorithm was suggested by the authors. For the presented methodology, enhanced
output was documented upon implementation. In 2015, various machine learning algorithms were
surveyed by Kansal et al. [27]. This includes linear regression, SVM, ANN, and wildfire determina-
tion decision modeling. In addition, a fire estimation algorithm for the acquisition of resulting data
has been presented based on linear regression. MolinaPico et al.[28] proposed a network of sensors
for wildfire determination in areas vulnerable to burning. The framework submitted consisted of fire-
fighting agencies, fire simulators, and a geographical information system (GIS). A comparative study
of several IoT networks and WSN frameworks was conducted by Mina and Ziade[29]. The authors
considered parameters such as power usage, the complexity of sensor-hardware, latency, efficiency,
and accuracy. On this basis, for wildfire monitoring, consisting of three-phased network topology and
IoT devices, a WSN is proposed. Saoudi et al.[30] suggested an IoT network in which, utilizing data
analytics technique, every sensor node detects fire. The device sends an emergency warning to the
destination sink via the cluster head to warn the firefighters about wildfire when the fire is observed.
A wireless sensor node architecture with minimal power consumption was proposed by Abdullah et
al[31]. The Low Power Wireless Ground Sensor Network (LPWGSN) was included for seamless forest
monitoring and fire detection based on sensory inputs. A self-organizing fault-tolerant framework
for early wildfire determination was proposed by Giuntini et al. [32]. Authors supported inter-node
contacts that control the area and organize activities via a supervisory node to assess fire early. Lin et
al.[33] proposed an algorithm focused on big data analytics to determine wildfire threats and measure
their computational ability. A 2-tier Sybil Attack determination framework for hierarchical WSN
implementation was presented by Jan et al.[34] for forest wildfire monitoring. High-energy nodes are
initially designed to identify the Sybil nodes and their respective forged identities. In cases where
one or more personalities exceed the first tier, two end stations can detect them. Toledo-Castro et
al.[35] presented an IoT network for the tracking and protection of wildfires about multiple channel
techniques and fuzzy-inspired forest-fire vulnerability controller.

2.1 Research Gaps

Based on the comprehensive literature review, numerous research gaps have been identified in the
current research. Some of the vital gaps have been identified and addressed in the current work.

1. Even-though work has been done for forest fire prediction; minimal work is performed for the
probabilistic prediction using machine learning conceptualization.

2. No work has quantified the parameters for the prediction of forest fire in real-time. In the current
study, this is achieved using Forest Fire Index measure instead of, described in Section 3.

3. Visualization is another domain where other researchers have contributed minimally. It presents
a major contribution to the current research in the current domain of study.
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Figure 3: Proposed Framework of Forest Fire

4. ToT has been incorporated by researchers for data acquisition, but little work is done to acquire
ambient parameters for forest fire estimation.

Based on the mentioned above gaps, a comparative analysis is shown in Table 2.

3 Presented Approach

The layered framework of the presented wildfire risk research strategy is shown in Figure 3. Every
layer has specified features for precise wildfire identification. The mechanism proposed was composed
of three layers. These involve the awareness layer of records, the layer of fog computing and the layer
of cloud storage. The perception layer of data consists of various IoT devices to track a wildfire forest
cover triggering parameters (WCPs). Using suitable transmission technology, the acquired data is
transmitted to the fog computing layer. Table 1 offers several networking protocols[9]. Such nodes
conduct data processing to provide efficient energy consumption for sensor nodes that are limited by
resources. In addition, data dimensionality at the fog layer is reduced before further processing at the
cloud storage layer. The cloud computing layer calculates a forest block’s current wildfire susceptibility
and long-term wildfire prediction. In addition, detailed data on wildfires and the effects of the study
are stored in the cloud layer, helping to take precautionary steps during forest fires of variable size.

3.1 Data Acquisition Layer

Since the techniques are vital in triggering wildfires, a successful forest-fire identification technique
relies on detailed data on various forest-fire triggering parameters(FTP). This layer accumulates vast
amounts of FTP’s basic information. Many lightweights, cheap IoT gadgets installed in the wildfire
cover have carried out this research. After a pre-fixed time, IoT sensors seamlessly detect, collect,
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Algorithm 1 Energy Conservation Layer

Input: Sensor values for recent period of t1 and t2, current node, Estimation of similarity, Threshold
Step 1: Determine the sensor node value for for previous 2 readings
Step 2: If Battery is greater than 0, it indicates node is still alive

Step 3: Current node value is set to active

Step 4: Determine the similarty between data values using intersection
Step 5: Set similarity value as cardinality of 2 data values

Step 6: If similarity is greater then threshold, Delete previous data value
Step 7: Wait for activation of node

Repeat steps 1-7 for given time window

Output: Unique data values

Algorithm 2 Data Reduction Layer

Step 1: Input environmental paramters of humidity, speed, precipitation. Constants are selected for weight
association, and thresholds are defined.

Step 2: Initialize Index Value to 0

Step 3: Compare the parameters of humidity, temperature, pressure with the respective threshold values

Step 4: If the values are greater then respective threshold values than add the concerned weight to the Index
Value

Step 5: Add the weights to compute the final Index value

Output: Index value for the given time window

and transfer measures of FTPs. In addition, geographical positioning criteria defining future wildfire
epicenter spatial coordinates are vital in minimizing severe wildfire impacts. The obtained data were
divided into 2 groups :

(i) Dataset of FTPs

This involves various demographic factors such as rainfall, temperature, relative wind speed, and
humidity. In addition, in this dataset, FFMC (Fine Fuel Moisture Code), DC (Drought Code), ISI
(Initial Spread Index), and DMC (Duff Moisture Code) have been obtained.

(ii) Dataset of Location

This provides geographic, geographical locations of possible wildfire areas. These include, in other
words, spatial coordinates with the vertical and horizontal axis.

Table 3 contains, along with its requirements, a list of various FTPs. For further review and processing,
the acquired dataset is forwarded to the Fog layer.

3.2 Fog Layer

This layer is sandwiched between data acquisition and the proposed model’s cloud computing layer.
The utility of collecting and pre-processing an unstructured and missing datum by intelligent devices
from the acquisition layer is entrusted. The fog layer is split into two sub-layers within the current
scenario, including the model adaptive sampling layer (for similar value identification), the layer for
energy preserving, and the layer for minimizing data dimensions.

3.2.1 Adaptive Sampling and Energy Preserving layer

Energy preservation is vital to deploying a framework with humongous IoT devices, particularly
in wildfire environments where there can be significant obstacles to battery and power supply. IoT
devices generally acquire identical values for FTPs such as wind speed, temperature, and humidity
within a specified time instance during environmental monitoring. It becomes a vital aspect to remove
duplicate sensor readings to minimize energy consumption during data acquisition and reception. This
is achieved by utilizing Jaccard similarity in the adaptive sampling rate. The Jaccard similarity is
based on redundancy formulations for redundant records determination. For successive periods, the
presented model uses the Jaccard similarity function for determining the redundancy between acquired
data values for changing the data acquisition rate based on redundancy value. The Jaccard similarity
value is in the range of 0 to 1 value, with 1 depicting maximum similarity and 0 showing different
data values. Conspicuously, the datasets with close to 1 similarity value are redundant, and the value
of 0 Jaccard similarity depicts different data. The total number of datasets describes the Jaccard
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similarity function of Di and Dj datasets as the size of the intersection

Jaccarthj:Zgz:ng

Where tj determines the minimal measure that the domain expert pre-fixed. Also, as IoT used
to acquire environmental data sets are periodic in nature, it is, therefore, possible to describe the
acquired data set by the ith IoT-node within a given time-span as (D1, D2,..., Dn), Where Dn denotes
nth data value intercepted by the data set vector formulation for the ith sensor at specified instances.
Additionally, three additional tasks are analyzed to determine intra-node data collection and reduce
duplication efficiently. In certain examples, a specific formulation, including Owverlap, Behavior, and
Weighted Cardinality, has been utilized for evaluating the similarities among measures in the dataset.
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Figure 4: ANN Architecture for Prediction(x1, x2,...,xn are the input IoT values; ol is
the final ouput of FFI measure)

Definition 2 Behaviour is described as the degree of vitality of the data value acquired at the spe-
cific instance. Its range lies from 0 to 1. Moreover, its parabolic and hyperbolic form oscillate where
the X-Y azis depicts the data value and temporal sampling rate.

. o ty72Dy - pT .
Behavior= Ipr2 Dz+py Di

The Behaviour function’s input dataset differs according to the Jaccard similarity and cardinality
of the dataset as described ahead.

Definition 3 With a given temporal span DAL, weighted cardinality of the data vector D is de-
scribed as the accumulation of measurements of every sample frequency of the data. Mathematically,
it is computed as

Cardinality DAt= Y weight(Dk)
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Where the weight of every data instance calculated is denoted by weight(Dk).

Definition 4 Overlap is described as the similarity between the 2 data vectors (D1, D2) based on
data measures reported in the temporal window. Numerically, it is computed as

Overlap (DiNDj)= dindj Vi,j € Dn

Similarly, the overall function is computed for every data value acquired as a fog computing layer
at a given moment in time. The methodology of data reduction is formulated based on the study of
similarities. In Algorithm 1, different steps of the technique are described.

3.2.2 Data Reduction Layer

IoT sensors distributed across forest cover in wildfire tracking accumulate heterogeneous data
formats. Also, it is difficult to relay them over the transmission network, with vast data instances
collected in the specific time frame. The critical aspect is that the data elements be minimized or
compressed for reliable data for processing in a time-sensitive manner. The current research uses
the weighted attribute-specific data compression method to reduce the size of the data and preserve
data accuracy at the same time. Besides, the gross data cost at the back-end is minimized by such
minimization. The attribute utilized for compression is the Forest Fire Index(FFI) in the presented
framework. FFI represents a unique decomposed measure dependent on the priority or weighted
mean of various WCPs combined for wildfire tracking for the obtained data segments. In addition to
this, FFI would enable successful analysis at the cloud layer for prediction and warning generation.
Algorithm 2 assesses the importance of the FFI of the forest fire. Also, for this study, four essential
parameters are used to determine the FFIT value, including temperature, wind speed, humidity, and
precipitation measure. Threshold values derived by an authority in the domain are pre-determined.

3.3 Forest Fire Predictive Analysis

As a result of the limited capacity and computing power at fog nodes, deep data analysis for
prediction purposes is difficult to do. The cloud layer is also used for the collection and analysis
of accurate data for prolonged predictive analysis. This layer is broken into 2 primary layers for
simulation with an appropriate prediction model to assess the importance of wildfires. Secondly, for
presenting purpose, the visualization layer. Both sub layer’s comprehensive functionality is addressed
in advance.

3.3.1 Forest-Fire Prediction Layer

This layer’s major objective is to conduct effective forecast analysis using enhanced prediction
techniques for early wildfire determination. The Artificial Neural Network (ANN) is the tool used for
prediction purposes. It is a powerful detection paradigm for early-stage identification of particular
importance. Also, it is the most common artificial intelligence technology and is utilized for several
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applications by different researchers for prediction purposes. ANN consists of separate neurons in
the initial layer, the intermediate layer, and the result layer, as seen in Figure 4. Additionally, ANN
has the capacity for simultaneous training, monitoring, and learning. It is composed of 3 sub-layers,
including Tracking, Learning and Forecasting.

Sub-Layer 1: Tracking

The mechanism by which the ANN technique predicts the FFI is called the tracking layer. It initially
includes assigning measures to various FTPs using geo-location. Moreover, these measures analyze
the significant factor for forest fire attributes based on the wildfire region. The initial values include
multiple FTPs cumulation.

Sub-Layer 2: Learning

Acquisition of different FTPs is accompanied by process of learning where measurement errors are
created and removed. ANN uses the feed-forward/feed backward strategy for this purpose. The feed
process requires a mechanical translation between input and output transformations based on the al-
located measures and triggering function. The calculated value for evaluating and decreasing the error
rate is compared with the real value. If any, the error produced is minimized using the technique of
back-propagation, controlled by complicated numerical procedures. The whole process is iterated for n
times before the error rate achieves equilibrium. Mathematically, ANN’s learning process is seen ahead.

FFI :Zz‘]\iOXbl j-VZOXbQ(in)—/-b)v’-b

Where FFI is the expected forest-fire FFI value of a particular forest cover in a given time win-
dow Dt; X is the input vector with the number of elements J; b1(.) is the activation function used
to convert the input layer and the output layer; b2(.) is the activation function between the hidden
layer and the output layer; Xji is the weight allocated to the input layer jth neuron and ith neuron.
By changing the weights associated with connections, the ANN can decrease the discrepancy between
expected and real wildfire susceptibility stages. The hidden layer uses a transformation function that
is mathematically expressed as follows: The output layer uses a pure line transfer function that is
denoted mathematically as follows:

by (z)=transig(x)
by =prelin(x)

Sub-Layer 3: Forecast

ANN is referred to as trained as soon as the faults are reduced to a certain degree of approval. An
equipped ANN is used at a given time to forecast the FFI value for wildfire occurrence. Wildfire
forecast provides for the quantification of the assessment of risk based on surrounding conditions and
FTPs.

3.4 Visualization layer

Many environmental factors such as temperature, humidity, engagement, and wind speed can cause
a wildfire. These elements play a crucial role in wildfires through the broad land cover when accounted
for together. Therefore, the monitoring of these variables presents a significant problem for surveillance
organizations. To this end, the proposed paper integrates the methodology of self-organized mapping
(SOM) to accurately assess and simulate the forecast of wildfires in a time-sensitive manner. SOM
approaches ensure color mapping for forest cover based on the FFI measure. The conversion of ANN to
SOM is performed using U-matrix conceptualization. In U-Matrix, the distance between the neurons
is mapped onto the color-coding. The dark color depicts less space, and more stretch is characterized
by light color. Three shades are being used in this study. This includes, in real-time, Red for extreme
FFI value, Yellow for medium FFT value, and Green for low FFI value. Forest blocks are divided into
three distinct areas depending on the color-coding scheme. This includes the highly susceptible zone,
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Figure 6: IoT devices used for Monitoring; (a) Raspberry Pi; (b) ZigBee module; (c)
WiSense Nodes

the medium-sensitive zone, and the low-sensitive zone. Such zonal categorization helps the monitoring
organizations and the wildfire authority to inspect the large cover efficiently. The color-coding process
used in this technique is represented in Figure 5.

3.4.1 Cloud Storage

Another primary purpose of cloud data management is data preservation and knowledge regarding
wildfire incidents, forest fire patterns, atmospheric patterns vulnerable to fire. As such, knowledge will
contribute to successful precautionary steps by the emergency relief agencies involved. With wireless
access to historical records, it is possible to stop numerous wildfires with limited destruction of natural
resources. Besides, stored data is globally assessed at the cloud level, enabling, where necessary, global
wildfire prevention initiatives, policymaking, and life protection.

4 Experimental Implementation

This section conducts a statistical review of the proposed wildfire prediction model to determine
output aspects in the simulation setting. Three main layers are used in the current model of wildfire
prediction. Data is initially collected using IoT sensors in an energy-conservative system for FTP
tracking. Next, the data values are reduced and abstracted for wildfire vulnerability estimation.
Finally, the ANN model is utilized to test wildfire adversity to estimate the FFI value for forest-fire
prediction. Experimental simulation of the proposed method is provided based on these four measures
to execute
(1) Data Similarity Analysis
(2) Wildfire vulnerability forecast analysis
(3) Study of temporal delay
(4) General study of device stability
(5) Reliability Analysis
The findings are contrasted with different state-of-the-art techniques for a comprehensive evaluation
of the proposed forest-fire identification model.

4.1 Data Generation

WiSense devices are comprised of multiple environmental tracking gadgets by which wildfire FTP
values are obtained. These data sets consist of wind speed, temperature, humidity, and precipitation
FTPs for India’s 4 Punjab forest divisions. These include Amritsar, Jalandhar, Batala, and Gurdaspur.
For each parameter, data values compute to almost 4569 data values aggregating to 18,276 data
values. The Intel Coreib computer with a processor of 3.2 GHz quad-core and RAM of 16 GB is used
for experimental simulation. Various Raspberry Pi versions of the fog nodes and XBee module for
network connectivity. Fog nodes with 1-3 G cycles/s node processing power and computing intensity
of 350 cycles/bit were used (Figure 6. For cloud computing, two virtual CPUs were used for the
Amazon EC2 cloud.
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Figure 7: Similarity Analysis

4.2 Data Similarity Analysis

Data similarity analysis is used to identify the effectiveness of using Jaccard Similarity in the
current domain for data reduction. The effectiveness is calculated in terms of performance parameters
of Sensitivity, Specificity, Accuracy, and F-measure. The four categories of categorical data values
used to evaluate these measures are positive (more similar), negative( less similar), false positive, and

false negative.
1. Number of positive data values.
2. Number of negative data values.
3. Number of positive data values for false.

4. Number of falsely negative data values.

Results

Figure 7 depicts plots of these statistical performance estimators. The comparative analysis

is performed concerning Levenshtein similarity and cosine similarity. The detailed analysis is depicted

ahead.

1. The statistical evaluation of specificity is shown in Figure 7(a).

In terms of the number of

datasets, the plot indicates asymptotic behavior. As more data is included, performance in-
creases. For the given circumstance, however, the presented redundancy technique outperforms
existing data reduction techniques. The sensitivity of the presented technique is averaged 95.39%,

which is the highest among other methods.
similarity-based reduction in the current case.

It demonstrates the superiority of the Jaccard

2. Sensitivity measure for the data is shown in Figure 7(b). The plots depict the overall character
of the results. The presented technique has a specificity of about 97.26%, higher than other
state-of-the-art data reduction models. It indicates enhanced model performance.
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Table 4: Performance Analysis
Parameters SVM (%) | LSTM (%) | DT (%) | Proposed ANN (%)
Accuracy 92.99 94.12 93.14 96.78
Sensitivity 90.12 91.45 90.98 96.45
Specificity 91.98 90.45 95.15 94.78
F-measure 92.15 91.45 93.15 95.15
Mean absolute error (MAE) 4.45 5.17 6.34 3.15
Root mean square error (RMSE) 3.19 2.32 2.45 1.24

3. Accuracy of data is depicted in Figure 7(c). This type of analysis was examined in the segmented
form to estimate it. In comparison to existing models, the presented model outperforms them
with a 91.23% accuracy. As a result of these findings, the proposed technique outperforms other
techniques in the current context and is thus a good fit for the suggested model.

4. F-measure is another important parameter for estimation. In the current context, Jaccard simi-
larity registered enhanced measure of 94.32% which is better in comparison to other techniques,
depicting superior performance(Figure 7(d)).

4.3 Forest-fire Prediction Assessment

The suggested wildfire prediction mechanism uses the ANN methodology for research and pre-
diction. Six criteria are used to determine the effectiveness of ANN: precision, sensitivity, accuracy,
F-measure, root mean square error (RMSE) and mean absolute error (MAE). Several predictive tech-
niques have been integrated for comparative study. Long Short Term Memory(LSTM), Support vector
machine (SVM), and Decision Tree(DT) are among others. Noteworthy that only the prediction model
has been updated for comparative study, while the remaining model has kept the same. In Table 4,
the findings obtained are shown. In the present situation, relative to 93.79% (DT), 93.16% (SVM),
and 95.36% (LSTM), ANN reports a precision of 95.32%. In comparison, ANN registered high values
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Figure 9: Stability Assessment

of 92.36%, more than 92.38% of SVM, 91.11% of LSTM, and 90.65% of DT, for sensitivity values.
Similarly, ANN was able to outperform other strategies for precision and F-measure and observed high
values of 93.69% and 94.98%, respectively. These observations indicate that ANN is more vigorous
and, therefore, more successful in the current scenario. Moreover, for error analysis, in contrast to
other methods, ANN also reported low error rates. In particular, an average value of 3.78% for ANN
was reported for MAE, and 4.12% (SVM), 5.98% (LSTM), and 6.20% (DT) were acquired for others.
Similarly, in contrast to other state-of-the-art models, ANN received limited importance for RMSE. It
can be inferred that the presented methodology is highly efficient and reliable for wildfire prediction
in forest regions.

4.4 Temporal delay analysis

The time at which data is sensed and processed in the data repository concerns Temporal Latency.
Since wireless networking is used for the transfer of data, temporary information is used. When
assessing the overall efficacy of the system, delay plays a significant part. In other words, data
collection, preparation, and estimation are time-sensitive and essential for performance analysis. Also,
network capacity is another critical problem that must be resolved in real-time to deliver big data. For
various parameters, results are obtained and are shown in Figure 8. It can be seen that as the number
of data values grows, the temporal delay curve increases. However, regarding the manual sensing of
data values, the time interval records a mean value of 3.18s/datum, while the manual process records
an average value of 16.29s/datum. The presented wildfire prediction strategy is temporarily successful
in the current scenario, relative to the manual tracking process.

4.5 Comprehensive Stability Analysis

The proposed method of forest-fire identification is also evaluated for stability determination, in
addition to the findings obtained previously. The total device consistency over the number of datasets
for acquiring a certain degree of precision is determined by stability estimation. In terms of average
absolute change, it is registered (AAS). The higher AAS value represents the technique’s erratic
behavior, while lower values suggest high device stability. AAS measure for the different number of
data instances was registered in 0.16-0.49 depending on the results, averaging 0.29 (Figure 9). The
limited AAS measure that the system presented is a highly stable model.

4.6 Reliability Analysis

The overall performance of the suggested model is the central aspect of the reliability analysis.
The results of the dependability study are compared to those of several state-of-the-art decision-
making systems. Only the decision-making model is changed to assess the proposed model’s improved
performance, while the rest of the framework stays the same. The reliability of cumulative datasets
has been tested using 10% faked data. Figure 10 shows the reliability analysis results that were
obtained. As demonstrated, ANN-based decision-making superseded other comparable models in the
given circumstance, with average dependability of 83.26%. In comparison, LSTM achieved average
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reliability of 80.02%, DT achieved dependability of 72.23%, and SVM achieved average reliability of
64.03%. Based on these findings, it can be concluded that the provided model can outperform other
decision-making models in real-time circumstances. As a result, the ANN-based approach suggested
is exceedingly efficient and effective.

5 Conclusion

The IoT-inspired forest-fire identification framework for the early determination of wildfires is

presented. IoT equipment is initially used to gain powerful features, including temperature, wind
intensity, humidity, and precipitation, to ignite wildfires. The key innovation of the proposed method-
ology is its energy conservation and real-time estimation to take the required steps at an early stage.
The data compression technique based on Jaccard Similarity is used for this. The fog-cloud layer
then uses compressed data for further analysis. Specifically, characteristics that trigger wildfires are
compiled and computed in a Forest Fire Index (FFI). FFI value is utilized in real-time to assess
wildfire prediction. Moreover, the ANN model effectively predicts wildfire-prone areas using the Self
Ordered Mapping technique for forecast purposes. Numerous laboratory models were conducted to
test the proposed method. Several recent detection models were contrasted with the findings. Based
on the results, it was inferred that the procedure provided is highly efficient and accurate in wildfire
prediction.
One research unlocks new directions for further exploration. There are several applicability domains
and technological fields in the modern environment where future research can be done. From the point
of view of applicability, these include assessing other hazard consequences such as cyclonic impacts
and estimating tidal wave patterns.
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