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Abstract

This paper introduces an effective intelligent controller for robotic systems with uncertain-
ties. The proposed method is a novel self-organizing fuzzy cerebellar model articulation controller
(NSOFC) which is a combination of a cerebellar model articulation controller (CMAC) and sliding
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mode control (SMC). We also present a new Gaussian membership function (GMF) that is de-
signed by the combination of the prior and current GMF for each layer of CMAC. In addition, the
relevant data of the prior GMF is used to check tracking errors more accurately. The inputs of the
proposed controller can be mixed simultaneously between the prior and current states according
to the corresponding errors. Moreover, the controller uses a self-organizing approach which can
increase or decrease the number of layers, therefore the structures of NSOFC can be adjusted au-
tomatically. The proposed method consists of a NSOFC controller and a compensation controller.
The NSOFC controller is used to estimate the ideal controller, and the compensation controller is
used to eliminate the approximated error. The online parameters tuning law of NSOFC is designed
based on Lyapunov’s theory to ensure stability of the system. Finally, the experimental results of
a 2 DOF robot arm are used to demonstrate the efficiency of the proposed controller.

Keywords: Self-organizing technique, cerebellar model articulation controller, manipulator
system, cerebellar model articulation controller, Gaussian membership function.

1 Introduction
Robots has been used widely in many different applications such as automated manufacture, trans-

portation or in daily services. Technology in controlling robotic systems has been heavily investigated
in recent decades [1][2][3][4][5][6]. One of the challenging problems when designing controller for
robotic systems is uncertainties which come from several aspects such as unknown parameters, un-
known frictions, and external disturbances, etc. Although the researches mentioned above also consider
uncertainties and noises in their works, the results presented are still mainly relied on the nominal
parameters of the systems. However, in many practical applications, the parameters of the robots
usually change from time to time due to the change of the momentum of the systems or different loads
[7]. For example, a robot continuously moves an object between two stations will make the centrifugal
of it changes between two different values [8]. There are also cases where the robot has to carry
different types of objects due to customer’s demands [9][10]. In general, we may know the nominal
parameters of the system and the load themselves but we do not know how they will change when
the system is operated. Not to mention, there are also different noises that affects the system when
it is running, which then add more uncertainties into the dynamic model. In general, it is difficult
to calculate accurately the mathematical model of the robotic system due to the reasons mentioned
above and therefore designing the controller based on dynamic system model is not a trivial task.
One of the main challenges here is how to learn the unknown parameters of the system and how to
adapt when these parameters change. There are several methods have been researched to tackle this
problem such as evolutionary algorithms, sliding mode control, robust control, neuron network, etc.

Evolutionary algorithms [28] (EAs) are one of the learning methods that mimicking biological
evolution in nature. It is a well-known class of optimization algorithms to deal with black-box opti-
mization problems. One of the main advantages is that EAs do not require any prior knowledge about
the problem, but rather start with a randomly distributed population and update the population by
reproducing offspring with unique operators. There are several methods have been studied such as
genetic algorithm (GA), particle swam optimization (PSO), differential evolution (DE), opposition-
based learning, etc. Many studies in this area focus on different searching methods to increase the
convergence speed of the learning procedure. In [29], the author presents a modified opposition-based
learning method that uses a beta distribution with a selection switching scheme and a partial dimen-
sion changing scheme to accelerate the convergence speed. In [30], M. Elsisi developed a learning
method called future search algorithm (FSA), which is a heuristic algorithm that mimic the person’s
life to search for unknown parameters. The idea of FSA is based on the behavior of a person trying to
search for his best life by imitating the successful persons. One of the advantages of FSA is that it can
update the random initial and utilizes the local search between people and the global search between
the histories optimal persons to achieve the best solutions. It is shown in the paper that FSA has low
computational effort and high convergence speed compared to other heuristic algorithms such as GA,
PSO. However, these methods are currently applied successfully only in theory and mainly focus on
the learning procedure.

Taking a step further, M. Elsisi utilized lightning search algorithm (LSA) [31] to find the optimal
parameters for a variable structure controller (VSC) that is used to control a nuclear reactor power
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system [32]. In general, the main problem when designing a VSC controller is the choice of the
switching vector and the feedback gains. This can usually be done by using a searching algorithm
which is LSA in this work. The author also incorporated Lyapunov function when designing the
controller, such that ensures the stability of the system. The controller is then verified in simulation
of controlling a nuclear reactor. The author showed that VSC based on LSA has better performance
compared to VSC based on other GA which is the main purpose of this work. However, the convergence
speed of LSA is still approximately 1.5 minutes on a rather high-end computer, which make it incapable
of controlling fast systems such as motors or robotic systems.

With the same approach as VSC, the author in [33] takes advantage of a searching algorithm named
multi-tracker optimization algorithm (MTOA) to properly select the parameters of a model predictive
controller (MPC). MPC is a powerful control method that utilizes the past and current values of the
output to predict the behavior of the system in the future. However, MPC needs to be properly
configured by selecting the weight matrices of the objective function, the prediction horizon, control
horizon and the sample time. An inappropriate selection may lead to less effective in controlling or
less efficient in computation time. The proposed modified MTOA in this work is carried out based on
opposition-based learning (OBL) and quasi OBL approaches. The proposed approach improves the
exploration behavior of MTOA to prevent it from becoming trapped in a local minimum. The author
then applied the MPC controller with the parameters are tuned by the proposed searching algorithm
on a robotic manipulator to track different linear and nonlinear trajectories. The results show the
improvement in term of tracking error compared to other approaches such as GA-based PID, original
MTOA-based MPC, etc. However, the searching part in this work is still performed offline and the
obtained parameters are then used to control the system after that.

Also using MPC-based controller to control autonomous vehicle under vision dynamic, the author
in [34] comes up with a different searching approach based on AI-techniques to tune the parameters
of the controller. The AI-based searching method is called social ski driver algorithm (SSDA) which
imitates the behavior of the sky drivers’ tracking during the downhill. SSDA combines the advantages
of different AI techniques in literatures to overcome the trapping in local optima. Like previous
approach, SSDA is used in this work to tune the parameters of a hybrid discrete-time Laguerre function
MPC (DTLF-MPC) to improve the performance of the vehicle system and reduce the computational
effort. The main results in the paper show that the convergence speed of the algorithm is fast enough
to be calculated online, which is the main advantage of this work. However, as the searching method
is based on AI-technique, there is no stability proof of the controller is provided.

Recently, many researches focus on intelligent control technologies such as Fuzzy Neural Network
(FNN), Neuron Network (NN), Cerebellar Model Articulation Controller (CMAC), etc. The general
requirement of these intelligent controllers is to reduce the impacts of unknown parameters and un-
structured disturbances by utilizing the learning abilities of controlled networks without the need of
knowing details about the system during the design phase. This is usually done by approximating a
part of the nonlinear model of the system or the whole of it using the learning ability of the controllers
[11]. Intelligent controllers has been used and applied successfully in many applications, especially
in adaptive control [12][13][14][15]. In general, there are two commonly approaches that have been
used the most in this area: first, the cerebellar model articulation controller is designed by combin-
ing the advantages of model-based controllers such as sliding mode, linear feedback controllers, etc
and the advantages of FNN, NN and CMAC to approximate the unknown nonlinear equation in the
dynamic model of the system [11], second, an intelligent-based approach is constructed to identify
the complete mathematical model of the system. The advantage of the second method is that the
dynamic model can be completely unknown but it requires a large amount of time for the algorithm
to converge. Nevertheless, both approaches have been researched and applied successfully in many
real-life application.

Generally, FNN, NN are able to approximate any nonlinear function with their learning ability.
However, the convergence speed is rather slow. To overcome this problem, CMAC is proposed by
Albus in [16] for identifying and controlling complex dynamic systems. CMAC has several advantages
compare to the normal NN such as its fast learning speed, more general and can be implemented easily
in different hardwares [17][18][19]. Chiang and Lin [20] and Chih-Min Lin; Hsin-Yi Li [21] continued to
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develop CMAC network with Gaussian and Wavelet basic functions. In their work, they analyze the
convergence capability of the network and present different results to prove the efficiency of the method
[17][18][19][20][21]. However, in most of the aforementioned researches about CMAC, the structure of
it is established to be unchanged, hence it is difficult to calculate the optimal memory space for the
learning speed of the network. If the memory space is too large, the learning speed will be decreased
as it requires more computational effort from the hardware. Therefore, it is difficult to implement this
method in online applications. Therefore, several researches [22][23][24] are proposed and successfully
implemented CMAC network with self-organizing structure to reduce the size of the memory using
different techniques such as group data, multilayer hierarchical CMAC model, Shannon’s entropy
measure and golden-section search method to increase or decrease number of layers of the network.

To increase the adaptive capability of CMAC network for online learning and reduce the compu-
tational effort when the system converges, this study proposes a novel self-organizing FCMAC called
NSOFC for robotic systems with uncertainties. This proposed control scheme allows RCMAC in
[22][25] have better local respond to determine the input values for RFBFs unit and the weight of
the hypercubes. The approach uses the integrated sliding surface and the overlapping of prior and
current GMFs at each layer to create a synthesis of two states for predicting the estimated errors.
Then the self-organizing method is used to determine whether it is necessary to increase or decrease
the number of current layers. The proposed control scheme is more general than the local feedback
control scheme. Utilizing the recursive unit, it is possible to determine a new membership function,
the input values for RFBFs and the weight values of hypercubes for CMAC. The adaptive PI is also
employed for adjusting the adaptive parameters. Moreover, the Lyapunov function is used to ensure
the stability of the system. Finally, the experimental results of the 2 DOF robot arm are presented
to prove the efficiency of the proposed control scheme.

2 System description
In general, a dynamic equation of an n joint robotic system can be written as follow:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration vectors respectively, M(q) ∈ Rn×n

is the inertia matrix, C(q, q̇) represents the centrifugal and Coriolis forces, G(q) ∈ Rn×1 represents
the gravity vector, τ ∈ Rn×1 is the applied control torque.

Equation (1) can be reformulated as:

q̈ = −M−1(q) (C(q, q̇)q̇ +G(q)) +M−1(q)τ
= f(x) + g(x)τ

(2)

f(x) =


f1(x)
f2(2)
...

fn(x)

 = −M−1(q) (C(q, q̇)q̇ +G(q)) ∈ Rn×1,

g(x) =

g11(x) · · · g1n(x)
... . . . ...

gn1(x) · · · gnn(x)

 = M−1(q) ∈ Rn×n.

where f(x), g(x) are nonlinear dynamic functions. These functions are usually difficult to obtain due
to measurement errors, different loads, frictions, and external disturbances. To solve this problem, we
assume that f0(x) ∈ Rn×1, g0(x) ∈ Rn×n are the nominal component of the real value of f(x), g(x)
respectively. We also assume that l(x) is the sum of the bounded and uncertain components.

Suppose that the system (1) is controllable and is inversible for all q.
Then equation (2) can be rewritten as:

q̈(t) = f0(x) + g0(x)τ + l(x) (3)
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where x =
[
qT q̇T

]T
is the joint position and velocity vectors respectively. In addition, tracking error

can be defined as:
e = qd − q (4)

where qd = [qd1 qd2 · · · qdn]T ∈ Rn is the desired joint position. Then, the tracking error vector can
be written as:

ē =
[
eT ėT · · · e(n−1)T

]T
∈ Rm×n (5)

Next, we define the sliding surface:

s = en−1 + k1e
n−2 + · · · + kn

∫ t

0
e(τ)dτ (6)

where s(t) = [s1(t) s2(t) · · · si(t) · · · sni(t)] ∈ Rni , and ni = m, ki = diag(ki1, ki2, . . . , kim) ∈ Rm×m is
a positive constant matrix.

If f0(x), g0(x) and l(x) are known accurately, then the ideal controller can be obtained as below:

uid = g−1
0 (x)

[
q̈d − f0(x)− l(x) + kT eT

]
(7)

Substituting (7) into (2), we get the dynamic error equation:

ṡ = e(n) + kT ē = 0 (8)

In (8), tracking error ē→ 0 when t→∞ if k is chosen appropriately according to Hurwitz stability
criterion. However, l(x) usually cannot be verified in practical applications. Thus, uid in (7) cannot
be identified.

Figure 1: Block diagram of NSOFC control system

It can be seen from Eq. (8) that the error will reach zero if the matrix K is selected such that
all roots of the characteristic equation stay in the left half of the “s” plane. However, uid in Eq.
(7) cannot be determined in the real scenario since l(x) is unknown. Therefore, we propose a new
controller which consists of a NSOFC controller, and an adaptive compensation described as follow:

u = uNSOFC + ucc (9)

where uNSOFC is the main controller which approximates the ideal controller in (7) and the compen-
sation controller is used to estimate the estimated error.
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3 Design the NSOFC Controller

3.1 Fuzzy CMAC controller with overlapping Gaussian membership function

Both aforementioned CMAC [27] and RCMAC [26] controllers are only designed with one GMF
activated at each layer. Our proposed controller uses two GMF for each layer instead. Table 1 shows
the comparison between the local feedback RCMAC and the proposed controller. The proposed control
scheme has two adaptive coefficients Λk and βk, therefore it is more flexible for the control system
to identify the input values of RFBFs and hypercubes. When a trajectory shifts from the current
activating state to the next state, the prior GMF still being activated as well as the current GMF.
The self-organizing technique is used to adjust the number of layers in FCMAC. If the error exceeds
the threshold, a new layer will be created. The NSOFC structure uses overlapping GMF, presented
in Fig. 2, which includes three continuous mappings and one output, can be written as follow:

I → A (Input→ Associated memory)
A→ R (Associated memory→ Receptive field)
R→W (Receptive field→ Network weight memory)

(10)

OutputO : O(I) = WHsynthesis, (11)

Figure 2: Structure of the proposed NSOFC with overlapping GMF

The following fuzzy control laws are used for the proposed controller:

Rjk : If I1 is Ω1k, I2 is Ω2k, . . . , and Ini is Ωnik then
ŵjk = vP (ŵjkP ) + vI (ŵjkI)

for j = 1, 2, . . . ,m and k = 1, 2, . . . , nk.
(12)

Input state variables I = [I1 I2 · · · Ini]T are connected to association memory A only contains
one block for each layer. Each variable is arranged in one block of each layer. At each block, there
are two GMFs define one synthesis RFBF. These two GMFs, Ωpresent

ik và Ωprior
ik are presented in Fig.

3. The value of Ωprior
ik is stored in memory, and the values of Ωpresent

ik , Ωprior
ik are recursively calculated
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Figure 3: Two overlapping GMFs for calculation of the synthesis RFBF

Table 1: Comparison between the proposed controller and the local feedback RCMAC

Input value of RFBF λk βk
Local feedback RCMAC [27] Ii(t) = λkΩprior

ik
+ βkIi = λkΩprior

ik
+ Ii Online tuning 1

Proposed controller Ii(t) = λkΩprior
ik

+ βkΩpresent
ik

Online tuning Online tuning
(a)

Value of hypercube block

Local feedback RCMAC [27] Hsynthesis =
∏n

i=1 Ωpresent
ik

=
∏n

i=1 exp
[

−

(
Ii−mpresent

ik

)2(
σ

present
ik

)2

]
Proposed controller Hsynthesis = λkh

prior
k

+ βk
∏n

i=1 exp
[

−

(
Ii−mpresent

ik

)2(
σ

present
ik

)2

]
(b)

as follow:

Ωprior
ik (Ii) = exp

[
−

(Ii −mprior
ik )2

(σpriorik )2

]
, i = 1, 2, . . . , ni, k = 1, 2, . . . , nk (13)

Ωpresent
ik (Ii) = exp

[
−

(Ii −mpresent
ik )2

(σpresentik )2

]
, i = 1, 2, . . . , ni, k = 1, 2, . . . , nk (14)

The input values of RFBF are defined as:

Ii(t) = λkΩprior
ik + βkΩpresent

ik (15)

where Ωpresent
ik is the current RFBF,mpresent

ik is the mean value and σpresentik is the current state variance
of the kth layer corresponding to the ith input variable. Similarly, Ωprior

ik is the prior RFBF, mprior
ik

is the prior mean value and σpriorik is the prior state variance. λk and βk are the adaptive estimation
gains.

The prior state is stored in the memory as an estimation for the next state. Therefore, when the
current state is activated, it will combine with the prior state to estimate the next state.

The example in Fig. 4 illustrates the 2D space, the output from the NSOFC is the sum values of
the present (6, 5) and the prior (5,4) hypercubes. One synthesis hypercube is defined as below:

Hsynthesis ≡ H = λHprior + βHpresent = λkH
prior
k + βk

ni∏
i=1

Ωpresent
ik (16)

Where
λ = [λ1, λ2, · · · , λk, · · · , λnk ] and β = [β1, β2, · · · , βk, · · · , βnk ] are the adaptive estimated

weights of the prior and current hypercubes.
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Hprior = ∏ni
i=1 Ωprior

ik = [hprior
1 hprior

2 · · · hprior
k · · · hprior

nk
]T are the values of the prior hypercubes.

Hpresent = ∏ni
i=1 Ωpresent

ik = [hpresent
1 hpresent

2 · · · hpresent
k · · · hpresent

nk
]T are the values of the current

hypercubes.
H = λHprior + βHpresent = [ h1, h1, h2, ..., hk, ..., hnk ] T ∈ Rnk are the synthesis values of the

prior and current hypercubes.
For NSOFC, the weight gain w and hypercube h are defined as vjk = wjkhk, where wjk is the weight

of the kth hypercube respectively with the jth output.
The jth output is defined as:

u = O = W TH = [w1 w2 · · · wj · · · wm]T


h1
h2
...
hnk

 (17)

u = Oj = W T
[
λHprior + βHpresent

]
, j = 1, 2, · · · , m (18)

Where W = [w1 w2 · · · wj · · · wm], wj= [w1j w2j · · · wnkj ]
T .

Design an optimal controller u∗:

uid = u∗ + ∆ = W ∗TH∗ + ∆ (19)

Where ∆ is the approximated error andW ∗, H∗, m∗, σ∗ represent the optimal parameter matrices
and vectors of W, H, m, σ respectively. In practice, these optimal matrices and vectors are difficult to
verify the values which approximate to ideal controller. Therefore,û is estimated online to define u∗.

The estimated function û is defined as:

û = Ŵ T Ĥ (20)

Where Ŵand Ĥ are the estimated parameter matrix and vector of W ∗, H∗ respectively, and
m̂, σ̂, λ̂, β̂ are the estimated parameter vectors of m∗, σ∗, λ∗ và β∗ respectively.

The estimation error is defined as:

ũ = uid − ûNSOFC = W ∗TH∗ − Ŵ T Ĥ + ∆ = W̃ T H̃ + Ŵ T H̃ + W̃ T Ĥ + ∆ (21)

Where W̃ = W ∗ − Ŵ and H̃ = H∗ − Ĥ. Here Taylor expansion is used to convert nonlinear
functions into linear functions [12]:

H̃ = Hmm̃+Hσσ̃ +Hλλ̃+Hββ̃ + Θ (22)

Where m̃ = m∗ − m̂, σ̃ = σ∗ − σ̂, λ̃ = λ∗ − λ̂, β̃ = β∗ − β̂, Θ is a high-order vector.

Hm =
[
∂h1
∂m

∂h2
∂m
· · · ∂hnk

∂m

]T ∣∣.m=m̂ , Hσ =
[
∂h1
∂σ

∂h2
∂σ

... ∂hnk
∂σ

]T ∣∣.σ=σ̂ ,

Hλ =
[
∂h1
∂λ

∂h2
∂λ
· · · ∂hnk

∂λ

]T ∣∣∣.
λ=λ̂ , Hβ =

[
∂h1
∂β

∂h2
∂β

... ∂hnk
∂β

]T ∣∣∣.
β=β̂ ,

Substitute (22) into (21), we get:

ũ = W̃ T H̃ + Ŵ T
(
Hmm̃+Hσσ̃ +Hλλ̃+Hββ̃ + Θ

)
+ W̃ T Ĥ + ∆

= W̃ T Ĥ + m̃THT
mŴ + σ̃THT

σ Ŵ + λ̃THT
λ Ŵ + β̃THT

β Ŵ + Ŵ TΦ + W̃ T H̃ + ∆
(23)

To increase the convergence of the output weight, W ∗ is divided into two parts [12]:

W ∗ = vpw∗
p + viw∗

i (24)
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Figure 4: 2D structure of NSOFC with the overlapping GMFs

Where w∗
p and w∗

i represents the proportional element and integral element of W ∗ and w∗
i =∫ t

0 w∗
pdτ respectively, vp and vi are positive constants. Similarly, Ŵ is also divided into two parts

Ŵ = vP ŵP + vIŵI (25)

Where ŵP and ŵI are the proportional and integral elements of Ŵ , ŵI =
∫ t

0 ŵPdτ . Therefore, W̃
is defined as follow:

W̃ = vIw̃I − vP ŵP + vPw∗
P (26)

Where w̃I = wi∗- ŵI . Substitute (26) into (23), we get:

ũ = (vIw̃I − vP ŵP + vPw∗
P )T Ĥ + m̃THT

mŴ + σ̃THT
σ Ŵ + λ̃THT

λ Ŵ + β̃THT
β Ŵ + Ŵ TΘ + W̃ T H̃ + ∆

= vIw̃TI Ĥ − vP ŵTP Ĥ + m̃THT
mŴ + σ̃THT

σ Ŵ + λ̃THT
λ Ŵ + β̃THT

β Ŵ + ε
(27)

Where the uncertain coefficient ε = vP v
∗T
p Ĥ + Ŵ TΘ + W̃ T H̃ + ∆ is the approximation of total

errors, bounded by 0 ≤ ‖ε‖ ≤ El , where El is a positive constant.

3.2 Self-organizing structure

The online self-learning for structure and parameters of NSOFC is proposed as in Fig. 1. The first
task of structured learning is to verify whether it is necessary to add a new layer into the associated
memory A and create hypercubes with its weight memory. If the current inputs are in the range of
the defined data, then NSOFC does not create a new layer but updates the parameters for the current
laws.

Mean distance, DMk, is defined as:

DMk = ‖I −mk‖2 (28)

Where mk = [ m1k, ..., mik, ..., mni k ]T
To check whether a new layer need to be added [20]:

k̂ = arg min
1≤k≤nk

DMk (29)

If maxi DM
k̂
> βG then a new layer is created, where βG is the pre-defined threshold.

If the distance between input data and the mean values are bigger than the threshold, it means
the current values of the current GMF is too small, then a new layer is added. The layer number is
increased as follow:

nk(t+ 1) = nk(t) + 1 (30)
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Where nk(t) is the current layer number at t.
The output weight values are randomly generated for a new layer, the mean value, and the variance

of GMFs are defined as:

mink = Ii (31)
σink = σint (32)
wink = δr (33)

Where Ii is the new input, σint is the pre-defined constant, and δr is a random constant.
To learn the structure, any unnecessary layer must be deleted. To decrease the layer number [20],

the ratio of the kth element of jth output is defined as:

SEjk = vjk/Oj (34)

Then the maximum ratio of the jth output respective to the minimum element is computed as:

k̃ = arg min
1≤k≤nk

max
1≤j≤m

SEjk (35)

If SEjk ≤ βD
Then the kth layer must be deleted, where βD is the pre-defined threshold.

(36)

The function (36) shows that if the element of the current layer is smaller than the threshold then
it will be deleted.

3.3 Adaptive NSOFC control system

The NSOFC system uses adaptive PI algorithm which is showed in Fig. 1. The control law (9) is
substituted into (3). Using (6) and (7), then the sum errors function become:

ṡ = e(n) + kT e = g0(uid − ûNSOFC − ucc) (37)

Using (27), then (37) is rewritten as:

ṡ = g0(vIw̃TI Ĥ − vP ŵTP Ĥ + m̃THT
mŴ + σ̃THT

σ Ŵ + λ̃THT
λ Ŵ + β̃THT

β Ŵ + ε− ucc) (38)

To ensure the stability of the control system, a Lyapunov function is chosen as:

V = 1
2s

T g−1
0 s+ vI

2 tr
(
w̃TI w̃I

)
+ 1

2vm
m̃T m̃+ 1

2vσ
σ̃T σ̃ + 1

2vλ
λ̃T λ̃+ 1

2vβ
β̃T β̃ + 1

2vDe
Ẽ2
l (39)

Where vI , vp, vm, vσ, vλ, vβ and El are the positive constants with the role of learning rate. The
uncertain bound of El cannot be measured in practice, therefore the estimated bound Êl is used. The
error bound is computed as: Ẽl = El − Êl.

Differentiate equation (39), and using (38), we get:

V̇ = sT g−1
0 ṡ− vItr

(
w̃TI ˙̂wI

)
− 1
vm

m̃T ˙̂m− 1
vσ
σ̃T ˙̂σ − 1

vλ
λ̃T

˙̂
λ− 1

vβ
β̃T

˙̂
β − 1

vDe
Ẽl

˙̂
El

= vI

m∑
j=1

w̃TjI(sjĤ − ˙̂wjI) + m̃T

(
sTHT

mŴ −
˙̂m
vm

)
+ σ̃T

(
sTHT

σ Ŵ −
˙̂σ
vσ

)

+ λ̃T

sTHT
λ Ŵ −

˙̂
λ

vλ

+ β̃T

sTHT
β Ŵ −

˙̂
β

vβ

− vP m∑
j=1

ŵTjPsjĤ + sT (ε− ucc)−
1
vEl

Ẽl
˙̂
El

(40)

The functions vItr
(
w̃TI ˙̂wI

)
= vI

∑m
j=1 w̃TjIW̃jI and sT w̃TI Ĥ = ∑m

j=1 sjw̃TjIĤ are used.
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Then the adaptive laws are written as follow:

ŵjP = sjĤ − ηI(ŵjI − w0) (41)
˙̂wjI = sjĤ − ηI(ŵjI − w0) (42)
˙̂m = vm[sTHT

mŴ − ηm(m̂−m0)] (43)
˙̂σ = vσ[sTHT

σ Ŵ − ησ(σ̂ − σ0)] (44)
˙̂
λ = vλ[sTHT

λ Ŵ − ηλ(λ̂− λ0)] (45)
˙̂
β = vβ[sTHT

β Ŵ − ηβ(β̂ − β0)] (46)

Where ηI , ηm, ησ, ηλ and ηβ are small positive constants; w0, m0, σ0, λ0, and β0 are the initial
estimation vectors of W ∗, m∗, σ∗, λ∗, and β∗ respectively, then the compensation controller is written
as:

ucc = Êltanh

(
s

ξ

)
(47)

The estimation law for the bound:

˙̂
El = vEl

[
s tanh

(
s

ξ

)
− ηEl(Êl − Êl0)

]
(48)

Where tanh(.) is a hyperpol tengent function, El0 is the initial value of El , ξ and ηEl are the small
positive constants. Using (41) – (48), (40) becomes:

V̇ =
m∑
j=1

w̃TjIvIηI (ŵjI − w0) + m̃T ηm (m̂−m0) + σ̃T ησ (σ̂ − σ0) + λ̃T ηλ
(
λ̂− λ0

)
+ β̃T ηβ

(
β̂ − β0

)

− vP
m∑
j=1

ŵTjP [ŵjP + ηI (ŵjI − w0)] + sε− sÊl tanh
(
s

ξ

)
− 1
vEl

ẼlvEl

[
s tanh

(
s

ξ

)
− ηEl

(
Êl − Êl0

)]

≤
m∑
j=1

w̃TjIvIηI (ŵjI − w0) + m̃T ηm (m̂−m0) + σ̃T ησ (σ̂ − σ0) + λ̃T ηλ
(
λ̂− λ0

)
+ β̃T ηβ

(
β̂ − β0

)

−
m∑
j=1

ŵTjPvP ηI (ŵjI − w0) +
∣∣∣sT ∣∣∣El − sT Êl tanh

(
s

ξ

)
− Ẽl

[
s tanh

(
s

ξ

)
− ηEl

(
Êl − Êl0

)]
(49)

With any ξ > 0:
0 ≤

∣∣∣sT ∣∣∣− sT tanh
(
s

ξ

)
≤ κξ (50)

Where K is a positive constant which satisfies K = exp(-(K + 1)) [13].
Using (50), (49) becomes:

V̇ =
m∑
j=1

w̃TjIvIηI (ŵjI − w0) + m̃T ηm (m̂−m0) + σ̃T ησ (σ̂ − σ0) + λ̃T ηλ
(
λ̂− λ0

)
+ β̃T ηβ

(
β̂ − β0

)

−
m∑
j=1

ŵTjPvP ηI (ŵjI − w0) + Elκξ + Ẽl
[
ηEl

(
Êl − Êl0

)]
≤ −1

2vIηIΞwI −
1
2ηmΞm −

1
2ησΞσ −

1
2ηλΞλ −

1
2ηβΞβ −

1
2vP ηIΞwP −

1
2ηElΞEl + Elκξ

(51)
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Where

ΞwI =
m∑
j=1

[∥∥∥w∗
jI − ŵjI

∥∥∥2
+
∥∥∥w∗

jI − w0
∥∥∥2
− ‖ŵjI − w0‖2

]
(52)

Ξm =
[
‖m∗ − m̂‖2 + ‖m∗ −m0‖2 − ‖m̂−m0‖2

]
(53)

Ξσ =
[
‖σ∗ − σ̂‖2 + ‖σ∗ − σ0‖2 − ‖σ̂ − σ0‖2

]
(54)

Ξλ =
[∥∥∥λ∗ − λ̂

∥∥∥2
+ ‖λ∗ − λ0‖2 −

∥∥∥λ̂− λ0
∥∥∥2
]

(55)

Ξβ =
[∥∥∥β∗ − β̂

∥∥∥2
+ ‖β∗ − β0‖2 −

∥∥∥β̂ − β0
∥∥∥2
]

(56)

ΞwP =
m∑
j=1

[∥∥∥w∗
jP − ŵjI

∥∥∥2
+
∥∥∥w∗

jP − w0
∥∥∥2
− ‖ŵjP − ŵjI‖2 − ‖ŵjP − w0‖2

]
(57)

ΞEl =
[∣∣∣El − Êl∣∣∣2 + |El − El0|2 −

∣∣∣Êl − El0∣∣∣2] (58)

Then (51) is rewritten:

V̇ ≤ −1
2

vIηI m∑
j=1
‖w̃jI‖2 + ηm ‖m̃‖2 + ησ ‖σ̃‖2 + ηλ

∥∥∥λ̃∥∥∥2
+ ηβ

∥∥∥β̃∥∥∥2
+ ηEl

∣∣∣Ẽl∣∣∣2


+ 1
2

vIηI m∑
j=1
‖ŵjI − w0‖2 + ηm ‖m̂−m0‖2 + ησ ‖σ̂ − σ0‖2 + ηλ

∥∥∥λ̂− λ0
∥∥∥2

+ ηβ
∥∥∥β̂ − β0

∥∥∥2


+ vP ηI

m∑
j=1

(
‖w̃jP − ŵjI‖2 + ‖w̃jP − w0‖2

)
+ ηEl |El − El0|

2 + Elκξ

(59)

Where ‖ .‖ is Eulicdean norm. Using (39), (59) becomes:

V̇ ≤ −ρ1V + ρ2 (60)

Where ρ1 and ρ2 are the constants defined as:

ρ1 = min(ηI , ηmvm, ησvσ, ηλvλ, ηβvβ, ηElvEl) (61)

ρ2 = 1
2

vIηI∑m
j=1 ‖ŵjI − w0‖2 + ηm ‖m̂−m0‖2 + ησ ‖σ̂ − σ0‖2 + ηλ

∥∥∥λ̂− λ0
∥∥∥2

+ ηβ
∥∥∥β̂ − β0

∥∥∥2

+vP ηI
∑m
j=1

(
‖w̃jP − ŵjI‖2 + ‖w̃jP − w0‖2

)
+ ηEl |El − El0|

2 + ρ1s
2

+ Elκξ

(62)

If (62) satisfies:
0 ≤ V (t) ≤ Ψ + (V (0)−Ψ) exp(−ρ1t) (63)

Where Ψ = ρ2
ρ1
> 0, then e, wI , σ, λ, βand El steadily bounded. Using (39) and (60) and given

any ξ > 2Ψ, if T exists with any t ≥ T , then error satisfied:

|e(t)| ≤ ξ (64)

Thus, the proposed NSOFC is stable.

4 Experimental results
The real model of the robot is presented in Fig. 5 while it is simplified as a 2D model in Fig. 6

to obtain the dynamic equation of the system. The two servos are located at joint A and B with the
respective control angles as θA and θB. The four arms of the robot have the same length Lb and are
linked to each other. The end-effector is located at joint E. The positions of joint A and B in the
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Figure 5: Quanser 2-DOF robot model Figure 6: Quanser robot model in XY plane

current X-Y coordinate system are (0,0) and (2Lb,0) respectively. In this experiment, the end-effector
of the robot is controlled to follow a circular trajectory defined as{

Exd = Rcos(ω)
Eyd = Rsin(ω)

with R = 0.75, ω = t (rad/s). The starting position of the robot is E0 =
[
Lb Lb

]T
with θ0 =

[
0 0

]T
.

The WFCMAC controller has the form: τ = τWFCMAC + τASIFC and the parameters of the two
controllers are chosen as in Table 2. The system uses an NI PCIe-6351 card to collect sensor data and
control the robot.

The experimental results of the two controllers are presented in Fig. 7, 8, 9. The results of
WFCMAC (a) are on the left side and the results of NSOSC (b) are on the right side. Position and
tracking errors of the two joints are illustrated in Fig. 7, the end-effector’s position, tracking errors
are illustrated in Fig. 8. The control efforts are illustrated in Fig. 9.

Moreover, the tracking errors of the end-effector of the two controllers are defined base on the error
standards of IAE, ISE, ITAE, ITSE and ISTE, are also presented in Table 3.

The proposed controller presents the high accurate tracking ability, tracking speed, and quickly
eliminate error which approaching to 0 even the system is an uncertain one. Here we use the IAE, ISE,
ITAE, ITSE and ISTE error standards to compare the two controllers. The result is showed in Table
3. It is showed that the proposed NSOFC has the data much smaller than the data of the WFCMAC
controller. It proves that the proposed controller has higher efficiency than the conventional CMAC
controller. It also proves that the modification of the number of layer help flexibly change for well
adaptive ability of the control system even the external disturbances existing in the control plant.

5 Conclusion and future work
This paper proposes a novel NSOFC controller for controlling uncertain robot arm systems. In

the proposed NSOFC, the dynamic of the control system is not needed. The online adjusting law of
adaptive parameters of the NSOFC and the compensation controller is defined based on Lyapunov
stability theorem to ensure the stability of the system. This paper not only develops successfully the
NSOFC control system for an uncertain non-linear system, but also derives the online self-organization
algorithm for control the layer number of the NSOFC controller to reduce the memory space as much
as possible. Finally, the experimental results prove that the proposed controller is possible to track
the given trajectories. This controller can also be applied for the other uncertain n DOF robots, even
uncertain non-linear systems. For future work, the control scheme can be extended to more complex
robotic systems such as articulated robots with higher degree of freedom. In addition, the learning
rules of the parameters of NSOFC still need to be further improved to reduce the “chattering” effect
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Table 2: The parameters comparison between two controllers: WFCMAC and NSOFC

WFCMAC controller NSOFC controller

Main
controller

- Layer number: nk = 5 (fixed)
- Block number: nj = 11
- Sliding surface: s(t) = ė(t) + ke(t),
k = 100I2
- Initial mean and variance of GMF:
mi = [−1− 0.8− 0.6 · · · 0.6 0.8 1]
σi = 0.15

- Initial output weight: w0 = 0.05
- Learning rate: η = 0.001, v = 0.01

- Layer number: nk = 5 ( can be changed)

- Sliding surface: s(t) = ė(t) + ke(t),
k = 100I2
- Initial mean and variance of GMF:
mprior
i = [−2− 1 0 1 2]

mpresent
i = [−2− 1 0 1 2]

σprior
i = 0.15
σpresent
i = 0.15

- Initial output weight: w0 = 10
- Learning rate: η = 0.001, v = 0.01
- Estimated coefficients: λ0 = 2 and β0 = 10
- Thresholds: βG = 0.35 and βD = 0.01

Compensation
controller

- Fuzzy set’s parameters:
ai = 0.2
bio = [−1− 0.75− 0.5 0 0.5 0.75 1]
- Bound’s estimation function:
cio = [−3.5− 2.5− 1.5 0 1.5 2.5 3.5]
- Learning rate: β = 0.01

- Bound’s estimation function:
El = 0.1
- Learning rate: ηE = 0.001, vE = 0.01

Table 3: The comparison between two controllers:WFCMAC and NSOFC

Comparison Efficiency Controller WFCMAC Controller NSOFC

IAE 0.3062 0.2062
ISE 0.0202 0.0220
ITAE 1.4115 0.7175
ITSE 0.0233 0.0078
ISTE 0.1527 0.0412
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Figure 7: Position responses, tracking errors of arm’s angles of two controllers (a) WFCMAC and (b)
NSOFC.

Figure 8: End-effector’s position response, tracking errors of the two controllers (a) WFCMAC (b)
NSOFC.
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Figure 9: The joint control efforts of the two controllers (a) WFCMAC (b) NSOFC.

in the control signal. The proposed controller can serve as the base for more complicated tasks such
as trajectory planning problem for the end-effector of robotic arm using image processing.
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