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Abstract

In view of the problems existing in the path planning algorithms of unmanned vehicles, such
as low search efficiency, slow convergence speed and easy to fall into the local optimal. Based on
the characteristics of route planning for unmanned vehicles, this paper introduces Q-Learning into
the traditional ant colony algorithm to enhance the learning ability of the algorithm in dynamic
environment, so as to improve the overall efficiency of route search. By mapping pheromones into
Q values in Q-learning, rapid search in complex environments is realized, and a collection-free
path satisfying constraints is quickly found. The results of case analysis show that compared with
the traditional ant colony algorithm and the improved ant colony algorithm considering reward
and punishment factors, the improved ant colony algorithm based on Q-Learning can effectively
reduce the number of iterations, shorten the path optimization time and path length and other
performance indicators, and has many advantages in jumping out of the local optimal, improving
the global search ability and improving the convergence speed, and has good adaptability and
robustness in complex environments. It ensures the safety and stability of unmanned vehicles in
complex environments.

Keywords: Autonomous vehicle, Path planning, Q-Learning, Improved ant colony algorithm.



https://doi.org/10.15837/ijccc.2024.3.5382 2

1 Introduction
Key issues in autonomous vehicle research include positioning, perception, planning, decision-

making, and control. On the basis of map information, environment information and intelligent
vehicle state information, the planning mainly uses artificial intelligence technology, probability theory
method and game theory method to complete global path planning and local trajectory planning. Path
planning is the bridge between information perception and intelligent control of unmanned vehicles,
and it is one of the decisive technologies in the realization of unmanned vehicles. Its task is to search
for a collision-free and optimal path to reach the target position safely according to certain evaluation
criteria in the environment with obstacles according to certain path planning algorithm [1, 2]. It
mainly involves two aspects: one is to model the road environment; The second is to select a suitable
algorithm for global path planning.

Road environment modeling mainly adopts several kinds of methods: grid method, viewable
method, free space method. The grid method divides the workspace into regular and uniform grids
containing binary information. The grid method divides the workspace into regular and uniform grids
containing binary information. Li Tiancheng et al. established a fan grid map model based on polar
coordinate system, which can effectively solve the problem of circular wave propagation algorithm[3].
Guo Lijin et al. proposed an adaptive raster map creation algorithm based on quadtree to solve the
problem that different raster sizes greatly affect the accuracy and effect[4]. Under the condition of
the same accuracy, the algorithm can effectively reduce the amount of data storage and computation,
and improve the real-time performance. Compared with the viewable method, the free space method
and the raster method, they are more flexible and consume fewer computing resources. However,
the disadvantages of this method are also obvious. The number of obstacles is proportional to the
complexity of the algorithm. If the algorithm is too complex, its reliability will be reduced.

Path planning algorithms can be classified into two categories, one is the conventional method,
the other is the reinforcement learning method. Conventional methods can be divided into graph
search method (such as Dijkstra, and A*), random sampling method (such as probabilistic road map,
and fast search random tree RRT), optimization-based method (such as model prediction planning
method), artificial potential field method and intelligent bionic algorithm (such as particle swarm
optimization algorithm, ant colony algorithm, genetic algorithm, simulated annealing algorithm, and
artificial neural network)[5–11]. Bacha et al. adopted Dijkstra algorithm to plan the global path of
intelligent vehicles or the local path with fewer scene nodes, but the planning efficiency of the algorithm
was low[12]. Some scholars use the improved A* algorithm considering the time factor to solve the
problem of collision-free path planning of automatic guided vehicles, which can effectively reduce the
turning problem during driving, but its spatial complexity is exponential and not suitable for large-
scale complex environment[13]. At the same time, some scholars use Rapidly exploring Random Trees
(RRT*) algorithm to search two-dimensional AUV paths online, but the randomness is strong, so it
is often difficult to get the global optimal path[14].

Jalalmaab et al. used the model-based prediction method to complete the overtaking trajec-
tory planning of intelligent vehicles under highway conditions and maintain the vehicle’s driving
stability[15]. However, since the optimization-based method does not have the ability to search, it is
difficult to apply this method in complex scenes with many pedestrians or vehicles. Since artificial
potential field method cannot deal with vehicle dynamics constraints, this method is often used in
conjunction with optimization methods such as model prediction method[16].

In recent years, some scholars have effectively solved some technical problems in the field of trans-
portation by using intelligent methods such as machine learning and reinforcement learning[22–24].
Miao et al. uses ant colony algorithm to carry out multi-objective optimization, comprehensively con-
sidering path degree, safety and fuel consumption, and uses adaptive improved ant colony algorithm
to obtain an optimal multi-objective path[18]. Xu Ling et al. developed a new way to extend the
ant search method to 16 directions and 24 adjacent domains to expand the search scope and improve
the path optimization effect and search efficiency of ant colony algorithm[19]. Li Tao et al. adopted
the ant colony algorithm based on Darwin’s theory of evolution to solve the problem that the tra-
ditional ant colony algorithm blindly searches in the blank grid, speeding up the iteration speed of
the algorithm and shortening the running time[20].Ant colony algorithm is first proposed by Italian
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scholar Maro Dorigo, is a distributed bionic algorithm, itself has strong robustness, but there is also
slow convergence, easy to fall into the local optimal problems[17].Q learning algorithm is a common
reinforcement learning method in path planning problems[25]. In the general Q learning algorithm, it
is easy for the agent to repeatedly explore the suboptimal path in the iterative process, and fall into
the local optimal, resulting in slow convergence of the algorithm. The traditional path planning algo-
rithm and single algorithm have some limitations in practical application, so the traditional algorithm
can be combined with reinforcement learning method to optimize. There are a lot of improvement
methods for ant colony algorithm, but the ant colony algorithm itself is easy to fall into local optimal
and deadlock two problems have not been completely solved because of these improved methods, Q
learning algorithm does not exist deadlock problem, local optimal problem is lighter than ant colony
algorithm, so this paper chooses Q learning as the research object[26].

LI et al. introduced a heuristic search strategy into the improved Q-Learning algorithm to speed
up the learning process and narrow the search space by limiting the variation range of direction
angles[21].MEERZA et al. proposed a path planning algorithm based on Q-learning and particle
swarm optimization. PSO was used to improve the iteration of Q table, which had better performance
in speed and precision than using these two algorithms alone[27]. YAO et al. based on Q-Learning
algorithm, combined with artificial potential field method, took black hole potential field as the envi-
ronment, so that the robot could jump out of the local optimal solution without prior knowledge[28].
LIU et al. combined RRT with Q-Learning algorithm and proposed a partition heuristic RRT al-
gorithm based on Q-Learning. Q-Learning was used to improve the reward function and obtain the
global optimal path, which could obtain smoother results and improve the ability of searching and
avoiding obstacles[29]. SHI et al. fused Q-learning algorithm with pheromone mechanism in ant colony
algorithm, and exchanged information between robots through pheromones to solve the problem of
information sharing in multi-agent path planning. Under the effect of Q value, robots made status
updates and decision choices[30].

For the complex working environment of the unmanned vehicle, considering that not only fixed
obstacles but also moving obstacles should be taken into account when the unmanned vehicle is driving
on the road, multiple turns of the traditional ant colony algorithm will increase the driving time of the
unmanned vehicle, and increase the amount of calculation and storage, thus reducing the operating
efficiency of the system. Q-Learning algorithm is easy to fall into local optimization, resulting in
slow algorithm convergence. The problem to be solved in this paper is to search for an optimal or
suboptimal path in this abstract model, that is, to search for a series of continuous non-collision
points from the starting point to the end point. We call this process path search. According to the
shortcomings of improved ant colony algorithm in path planning application in the above analysis,
combined with the problems faced in path planning of unmanned vehicles, this paper proposes Q-
learning ant colony algorithm, which maps pheromone into Q value in Q-learning, strengthens the
Learning ability of the algorithm in dynamic environment, and improves the overall efficiency of path
search. It can realize the fast search for the non-collision path that meets the constraint conditions in
complex environment.

2 The method principle of path optimization
The basic principle of ant colony algorithm is an optimization algorithm with positive feedback

mechanism. According to the definition of unmanned vehicle path planning and the characteristics of
ant colony algorithm, the principle of unmanned vehicle path planning based on ant colony algorithm
can be clearly defined. First of all, M ants are placed in the initial position, and with each ant as the
node center, the next node is determined according to the amount of information on each path and the
heuristic information on the path. Secondly, if ant i reaches the destination position first, it is proved
that ant’s path is the best in the optimization process of the epicycle. Therefore, global pheromone
update is carried out for ant i’s path. Then, starting from the end position, the starting position is
taken as the target to continue searching for optimization. If the obtained new path is better than
the current optimal path, it will be replaced and the global pheromone will be updated; otherwise,
the original optimal path will be maintained. Finally, the rule is repeated until a set constraint and
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a specified number of iterations are met.

3 Modeling of unmanned vehicle path planning problem
In this paper, the path planning of unmanned vehicle is defined as global static path planning

based on environment model. Therefore, path planning is mainly divided into environmental model
building and path searching.

3.1 Road environment modeling of unmanned vehicles

According to the characteristics of the path planning problem of unmanned vehicle, the position
structure information of all obstacles in the global path planning space can be obtained through
detection in advance. Moreover, different types of obstacles on the road surface are almost on the
same plane as the road surface, making the planning space approximate to a horizontal two-dimensional
plane. At the same time, considering the simple realization of grid method, it can express regular
obstacles clearly, especially easy to combine with other intelligent algorithms. Therefore, this paper
adopts the grid method to establish the environment model.

3.1.1 Create environment array

Setting up environment array, first use cartesian coordinate method to identify the planning space.
Take the upper left corner of the grid model as the origin, set the horizontal to the right as the
horizontal axis forward, and the vertical to the vertical axis forward. Each grid position corresponds
to a unit length on the coordinate axis. After this processing is completed, each grid has a unique
corresponding rectangular coordinate (x, y).

When an unmanned vehicle meets an obstacle during path planning, necessary measures must
be taken, that is, to avoid the obstacle in the horizontal direction. Therefore, the obstacle area is
defined in this paper as the area where unmanned vehicles must avoid in the horizontal direction. It is
assumed that the path planning space of unmanned vehicle is a grid plane W = H2, that is, a grid of
20 ∗ 20. In the planning space W, all grids are divided into two categories: free zones that unmanned
vehicles can pass through smoothly and obstacle zones that cannot pass through. These grids are
represented by the following formula:

f : W → {0, 1}
{

f(x) = 0, x ∈ free zone

f(x) = 1, x ∈ obstacle zone
(1)

According to the above formula, the whole planning space W is divided into small areas marked
0 or 1. Then W can be represented by a two-dimensional array, called G[ ][ ]. G[w][h] represents the
grid with row coordinate W and column coordinate h in the planning space w. If G[w][h] is 0, it is a
free region, represented by white; If G[w][h] is 1, it is the obstacle area, shown in black.
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Figure 1: Raster model of unmanned vehicle path planning map

3.1.2 Obstacle and boundary processing in environmental model

After the grid size is determined, connect the beginning and end of the path planning. Make
the line rotate 45 degrees (counterclockwise) as the horizontal axis, and the line perpendicular to
the horizontal axis is defined as the vertical axis. Then, according to the determined grid size, grid
discretization is carried out on the planning space. In the discretization of the planning space, there are
several aspects that need to be paid attention to when dealing with obstacles. Firstly, the boundary
of the environmental model is treated as an obstacle. Secondly, when the size of the obstacle is not
enough for a grid, it will be filled into a grid. Thirdly, if there is a concave part of the obstacle, this
concave is also treated as an obstacle to prevent local dead zone in path search.

3.2 Application of improved ant colony algorithm in route search of unmanned
vehicle

3.2.1 Path planning steps of unmanned vehicle based on traditional ant colony algorithm

Step 1: Parameter initialization.
The raster environment information of unmanned vehicle is represented by matrix composed of

0 and 1. Where, 0 means that no obstacles can pass through, 1 means that the grid is occupied by
obstacles and cannot pass through. Suppose the number of ants is M , the pheromone importance
factor a, the importance factor b of the heuristic function, and the number of cycles Nc.

Step 2: Transition probability calculation.
At the initial time, the amount of information on each path is equal, denoted as τij(0) = C.

In the process of moving, ant k determines the next node to be transferred according to the path
information and path heuristic information. P k

ij(t) represents the transfer probability of ant k from
grid i to adjacent grid j at time t. The specific formula is as follows:

P k
ij(t) =


[τij(t)]a · [ηij(t)]b∑

s∈Ak
[τis(t)]a · [ηis(t)]b , j ∈ Ak

0 , j /∈ Ak

(2)

ηij(t) = 1
dij

(3)

Where, Ak = {0, 1, 2, . . . . . . , n−1}−Bank represents the grid that ant k is allowed to access next.
Different from the actual ant colony, the ant colony system in the system has memory function. The
set Bank is the tabu set, which is used to record the grid nodes that ant k currently walks through,
and the Bank is constantly adjusted along with the search process of ants. ηij is a heuristic function,
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representing the expected degree of ant k moving from position i to position j. dij is the geometric
distance between node i and node j.

Step 3: Update the ant tabu table set Bank.
With each step taken by ant k, node j is added to the tabu set Bank.
Step 4: Calculated path length.
Repeat steps 2 and 3 until all ants within the loop reach the end point and calculate the length of

the path for each ant to reach the end point.
Step 5: Pheromone renewal.
Over time, the pheromones left on the path gradually disappear, and the remaining pheromones

are treated after each ant takes a step or at the end of a cycle. The t + n pheromone update rules are
as follows:

τij(t + n) = ρ · τij(t) + ∆τij(t) (4)

∆τij(t) =
∑
m

τk
ij(t) (5)

Where, ρ is the pheromone residue factor. To avoid the infinite accumulation of pheromones, its
value range ρ ∈ (0, 1); ∆τij(t) is the pheromone increment on path (i, j) in this loop, The initial time
∆τij(t) = 0; τk

ij(t) is the pheromone increment of the ant k on the path of this cycle (i, j).

∆τij(t) =


Q

Lk
, Ant K passes through the path (i, j)

0, Ant K doesn′t go through the path (i, j)
(6)

Where, Q is the pheromone intensity, which mainly affects the convergence rate of the algorithm;
Lk is the total length of the path taken by the ant k in this cycle.

Step 6: Ends the loop and prints the result.
If the end condition is met, the loop is terminated and the program calculation results are output;

otherwise, all tabu tables are cleared and go to step 2.

3.2.2 Improved ant colony algorithm based on Q-Learning

In order to improve the search efficiency and path planning quality of ant colony algorithm in
unmanned vehicle path planning, conventional ant colony algorithm was improved in this study[31–
33].

(1) Improved state transition rules
Although the existing state transition rules can effectively ensure the diversity of paths, the con-

vergence rate of the algorithm is slow because the difference between the weighted product of the
pheromone and the inspired information at each feasible point is not that large. Therefore, the state
transition rule is improved, as shown in Equation 7:

τj(t) =
{

argmaxs∈Ak
{τs(t)a · η(τis(t))b} , q ≤ q0

J , q > q0
(7)

Where, τj(t) represents the next accessed waypoint; J represents the next waypoint selected by
probability according to Formula (2); q0 is a given threshold between (0, 1) to adjust the algorithm’s
ability to explore new paths.

After the improvement, the algorithm has a greater chance to choose the point with the largest
weighted product of pheromone and heuristic information as the next path point, which speeds up
the convergence rate of the algorithm. Through experimental verification, under the threshold value
set in this paper, the algorithm’s ability to explore new paths is not hindered, the diversity of paths
is still guaranteed, and the algorithm will not easily fall into local optimal.

(2) The global pheromone update rule is modified
Q-Learning is a method for solving reinforcement learning problems using time series difference

without state transformation model[34, 35]. In this paper, Q-Learning is introduced to strengthen the
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learning ability of the algorithm in dynamic environment. Q-Learning behavior value function update
formula is as follows:

Qt+1(s, a) = (1 − χ)Qt(s, a) + χ(γt+1 + r · maxQ(st+1, a)) (8)

Where, use Q(s, a) as the cumulative return value of action a; χ is the learning rate, χ ∈ (0, 1); r
is the attenuation coefficient; γt+1 is the income obtained by selecting action a at time t + 1 according
to the environment state s.

The pheromone concentration of ant colony algorithm was mapped to Q value of Q-learning. The
pheromone updating rules in the ant colony algorithm are as follows:

τij(t + 1) = (1 − ρ)τij(t) + ρ(∆τij(t) + r · max(τij(t))) (9)

Where, max(τij(t)) is the maximum pheromone concentration at time t;∆τij(t) is the global
pheromone increment to ant from time t to time t + 1.

(3) Algorithm step
The improved ant colony algorithm based on Q-Learning proposed in this paper is shown in Figure

2. The specific steps are as follows:

Figure 2: Flow chart of improved ant colony algorithm based on Q-Learning

Firstly, the raster map environment is modeled, and the ant colony algorithm parameters such as
the number of ants and the number of algorithm iterations are initialized.

Secondly, set and initialize the tabu table of each forward ant. The tabu table of each forward ant
is used to store the nodes that have been visited so that the forward ant mark k = k + 1.

Then, within the range of nodes accessible to each forward ant, the next hop neighbor node j is
selected according to the improved state transition rule calculation formula. And the loop iterates
until all forward ants reach the destination node and convert to backward ants.

Finally, the backward ant k is updated according to the improved global pheromone updating rule,
which strengthens the global search ability of the algorithm, and repeats until the end of the cycle.
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4 Experimental simulation and result analysis
The effectiveness of the improved ant colony algorithm is verified by simulation analysis. Firstly,

the environment is modeled by using raster method, and two kinds of raster maps are designed, which
are normal environment and complex environment respectively. In these two scenarios, the effects
of traditional ant colony algorithm, improved ant colony algorithm and improved ant colony algo-
rithm based on Q-Learning are compared and analyzed. The running environment of the simulation
experiment was built by MatlabR2021a, and the processor was Intel(R) Core(TM) i7-4710MQ CPU
@2.50GHz.

4.1 Analysis of simulation results under normal environment

The path planning method of the improved ant colony algorithm is verified by MATLAB. Using
raster method to conduct modeling in a 20 × 20 environment, simulation parameters are as follows:
the number of ants is 30, the number of cycles is 200, the pheromone importance factor a is 1, the
importance factor b of the heuristic function b is 7, the pheromone residue factor ρ is 0.5. In an
improved ant colony algorithm based on Q-Learning, a given threshold q0 is 0.1, the learning rate χ
is 0.9, the attenuation coefficient r is 1.

It is difficult to show the advantage of improved ant colony algorithm based on Q-Learning by using
multi-index algorithm because of the limitations of raster maps. Therefore, the length of the optimal
path is used as the fitness function index for path planning, and by comparison, we verify whether the
algorithm proposed in this paper has improved the global search ability, convergence time, iteration
times and jumping out of the local optimal solution. Through simulation, different algorithms all
found an optimal path from the starting point to the end point in the same grid environment, specific
path planning is shown in Figure 3 to Figure 5. Figure 3 shows the simulation path using traditional
ant colony algorithm, the path falls into local optimal, and the path length is 48.1424. Compared
with the traditional ant colony algorithm, the improved ant colony algorithm adaptively selects the
parameters, the ability to jump out of the local optimal is enhanced, but the global search ability is
still slightly insufficient, and the path length is 37.3137. Finally, the improved ant colony algorithm
based on Q-Learning has a great improvement in jumping out of local optimal and global search, the
path length is 32.7279.

Figure 3: the path using traditional ant colony algorithm
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Figure 4: the path using improved ant colony algorithm

Figure 5: the path using improved ant colony algorithm based on Q learning

Figure 6 shows the iteration curves of the three algorithms, it can be seen that the early curve of the
improved ant colony algorithm based on Q-Learning can quickly approximate the optimal solution, and
it is significantly better than the previous two algorithms. This is because the algorithm proposed in
this paper maps pheromone concentration to Q value of Q-learning in the process of global pheromone
update, the search times and time in the early stage are greatly reduced, and then its iteration curve
can approach the optimal solution at a very fast speed without fluctuation. The minimum path length
and system running time under this algorithm are significantly reduced compared with the other two
algorithms.

Figure 6: Convergence curve trend diagram of different algorithms
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Table 1: Performance comparison of different algorithms in 20 × 20 grid environment
Parameters Minimum path length/m System uptime/s Optimal num-

ber of itera-
tions/times

traditional ant
colony algorithm

48.1424 25.1632 119

improved ant
colony algorithm

37.3137 10.5483 71

improved ant
colony algorithm
based on Q learn-
ing

32.7279 7.2526 18

4.2 Analysis of simulation results under complex environment

To verify the applicability of the proposed algorithm in different environments, raster maps are
complicated and 40 × 40 raster maps are established. To ensure the effectiveness and reliability of
the algorithm, the number of ants is changed 50. Through simulation, different algorithms all find an
optimal path from the starting point to the end point in the same grid environment, the specific path
is shown in Figure 7 to Figure 9.

Figure 7: the path using traditional ant colony algorithm

Figure 8: the path using improved ant colony algorithm
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Figure 9: the path using improved ant colony algorithm based on Q learning

The path length of traditional ant colony algorithm is 91.3553m, the path length of improved ant
colony algorithm is 87.1127 m, and the path length of the proposed algorithm is 75.6985m. As can be
seen from Figure 10,

Figure 10: Convergence curve trend diagram of different algorithms

the number of iterations of the algorithm in this paper is only 41.38% of that of the traditional
ant colony algorithm, and 61.54% of that of the improved ant colony algorithm. Compared with the
traditional ant colony algorithm, the path length and system running time are reduced by 17.14% and
61.81% respectively.

In the case of complex map, the number of iterations of the traditional ant colony algorithm is 58,
the convergence speed is too slow and the jumping ability is weak after falling into the local optimal.
The minimum convergence times of the improved ant colony algorithm is 39 times. It can be seen
that the algorithm has a great improvement in accelerating the convergence rate, but it needs to be
improved for jumping out of the local optimal case. The algorithm in this paper converges at least 24
times. Compared with the above algorithm, although the path is the shortest and the ability to jump
out of the local optimal is greatly improved, it still needs to be further strengthened to accelerate the
convergence speed.
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Table 2: Performance comparison of different algorithms in 20 × 20 grid environment
Parameters Minimum path length/m System uptime/s Optimal num-

ber of itera-
tions/times

traditional ant
colony algorithm

91.3553 125.4772 58

improved ant
colony algorithm

87.1127 90.3726 39

improved ant
colony algorithm
based on Q learn-
ing

75.6985 47.9216 24

5 Conclusion and future work
According to the specific characteristics of the path planning of unmanned vehicle, the grid method

is adopted to conduct environment modeling for the planning space, and the ant colony algorithm is
applied to the environment model to set the path selection probability of ants, pheromone updating
rules, etc. And the convergence rate of the algorithm is accelerated by mapping pheromone to Q
value. Finally, MATLAB is used to verify the effectiveness and feasibility of the method in multiple
simulation environments with different scales and characteristics. The method in this paper can
effectively reduce the number of iterations of the algorithm and find the optimal solution, but it
cannot guarantee the efficiency of the operation. At present, the unmanned path planning of static
obstacles in known environments is relatively mature, while the path planning of dynamic obstacles
in unknown environments is the focus of research. In the future, with the development of artificial
intelligence, Internet of Things and other technologies, model-free adaptive dynamic planning based
on data and event-driven will be the focus of future research.
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