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Abstract

Fraudulent transaction data tend to have several categorical features with high cardinality.
It makes data preprocessing complicated if categories in such features do not have an order or
meaningful mapping to numerical values. Even though many encoding techniques exist, their
impact on highly imbalanced massive data sets is not thoroughly evaluated.

Two transaction datasets with an imbalance lower than 1% of frauds have been used in our study.
Six encoding methods were employed, which belong to either target-agnostic or target-based groups.
The experimental procedure has involved the use of several machine-learning techniques, such as
ensemble learning, along with both linear and non-linear learning approaches.

Our study emphasizes the significance of carefully selecting an appropriate encoding approach
for imbalanced datasets and machine learning algorithms. Using target-based encoding techniques
can enhance model performance significantly. Among the various encoding methods assessed, the
James-Stein and Weight of Evidence (WOE) encoders were the most effective, whereas the CatBoost
encoder may not be optimal for imbalanced datasets. Moreover, it is crucial to bear in mind the
curse of dimensionality when employing encoding techniques like hashing and One-Hot encoding.

Keywords: imbalanced data, classifier, feature encoding, high-cardinality, fraud detection.

1 Introduction

Financial fraud is a significant issue for businesses and individuals alike, with losses amounting to
billions of euros each year. The negative effect of fraud is felt across all sectors of every country and
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can significantly lower the overall quality of life. Fraud has clear economic impacts, including reduced
financial stability for private enterprises, decreased quality of public services, diminished disposable
income for individuals, and lessened resources for philanthropic organizations. The leading organiza-
tions fighting fraud are financial institutions such as banks. They are using multiple approaches to
detect and prevent financial crime. Machine learning techniques are often employed in fraud detection
since they have shown promising results in detecting such transactions [1], [22], [33]. In this case,
however, we face a significant challenge due to the imbalanced nature of the data. Most transactions
are legitimate, while fraudulent transactions are rare, resulting in imbalanced datasets that negatively
impact classifier performance. In the real world, imbalanced data problems are found not only in
transactional data but also in cyber-security [9], churn prediction [8], and even protein classification
[34], etc. Another challenge when using machine learning in financial crime detection is categorical
features, such as City, Merchant Category Code (MCC), or Credit Card Brand. The majority of
machine learning algorithms are built for numerical features. When feature categories have an or-
der, converting them to numerical values is straightforward. The challenges come when working with
non-ordered categorical features, especially if they have high cardinality. High-cardinality refers to a
case where a dataset contains a large number of distinct values or categories in a particular feature
or column. One potential solution to this problem is to use categorical feature encoding techniques
to transform categorical data into numerical representations that machine learning classifiers can pro-
cess more effectively. However, the effectiveness of different encoding techniques when dealing with
imbalanced data has not been thoroughly evaluated.

In this paper, we compare and evaluate several popular categorical feature encoding techniques
for improving the performance of classifiers when dealing with imbalanced data of fraudulent trans-
actions. We explore the impact of these techniques on a range of classifiers, including Decision Trees,
Random Forests, and Gradient Boosting. We investigate encoding implications for machine learning
performance using two encoding technique groups - target agnostic, which does not rely on any target
information, and target based, which transfers statistical information of the target to the variable.
Both groups have their strengths and weaknesses. Target-agnostic techniques ignore the relationship
between the values of categorical features and the target value, while target-based methods can suffer
from prediction shift. Prediction shift is a phenomenon that occurs when the underlying distribution
of a dataset changes over time which leads to a shift in the relationships between the input features
and the target value. In other words, the patterns and correlations in the training data may no longer
hold for new data, which can result in inaccurate predictions and reduced model performance [31].
Prediction shifts can occur for various reasons, including changes in the population being studied,
changes in the data collection process, or changes in external factors that affect the relationship be-
tween the input features and the target. Prediction shift is also known as concept drift, which can
happen in many fields. It can be quantified through the Kullback-Leibler divergence to determine the
change in posterior probability distributions for different moments of incoming data streams [24].

The rest of the paper is organized as follows. Section 2 provides an overview of related work
in feature encoding techniques, specifically in imbalanced data. Section 3 describes the encoding
techniques and classifiers used in this study. Section 4 contains information on the datasets used in
the experiment, and Section 5 explains our experimental setup. In Section 5, we also present and
analyze the results of our experiments. Finally, in Section 6, we discuss our findings and provide
recommendations for practitioners in selecting appropriate categorical feature encoding techniques
when dealing with imbalanced data of fraudulent transactions.

2 Related work

In this section, firstly, we review valuable and impactful papers in the scope of high-cardinality
categorical features encoding with different sizes of datasets and a variety of applications. In the second
part, we review the high-cardinality feature encoding impact when dealing with highly imbalanced
datasets, where the minority class contains less than 1% samples from the whole dataset.
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2.1 High-Cardinality Categorical Features Encoding

Comprehensive research on high-cardinality feature encoding for classification and regression prob-
lems using balanced datasets is presented in the paper [23]. The authors compare seven encoding
techniques using five machine-learning algorithms on 24 datasets. Datasets used in the research are
binary or multi-class and relatively balanced compared to fraudulent transaction datasets. Chosen
datasets differ in size; the smallest is less than a thousand entries, and the biggest is more than a
million. The datasets consist of 1 to 20 categorical features, each with over 10 levels (distinct values of
a particular feature). The highest number of levels for a feature varies from 14 to 30114. The article
suggests that target-based encoders outperform target-agnostic encoding techniques.

Uyar et al. [32] compared automatically calculated techniques against expert judgment. Feature
encoding techniques were investigated in IVF (in-vitro fertilization) implantation prediction. The
suggested frequency-based encoding technique outperforms expert judgment.

A special case was presented in [29], where the Bayesian encoding technique was developed for
WeWork’s lead scoring engine. The company faces a high-cardinality feature problem as they have
categorical features with more than 300k categories. The authors state that the AUC metric improved
from 0.87 to 0.97. However, when researchers compared performance on the publicly available dataset,
the developed solution was not so impressive.

Due to high-cardinality, these types of features are sometimes excluded from the modeling scope.
However, [11], [21] showed that the model’s performance increases statistically significantly when they
are included.

2.2 Features Encoding for Imbalanced Data

[7] investigates the impact of feature encoding techniques on highly imbalanced fraudulent trans-
action dataset. The data used for the research is from a major French bank, and Data Protection
Law does not allow sharing it. In this case, replicating the experiment is not possible. However, the
results and conclusions inspire more profound research. Another study on real fraudulent dataset [27]
proposes a way to encode categorical features by applying Word2Vec embedding, which is usually
used for sentence encoding. The outcome of the research was a 50% reduction in memory usage and
slightly improved performance.

J. M. Johnson and T. M. Khoshgoftaar published several papers regarding high-cardinality cate-
gorical features encoding on Medicare Fraud Prediction [16], [17]. The dataset used in the research is
highly imbalanced as in 56 million rows, only 0.06% are fraudulent. With [16], researchers showed that
semantic embedding performs significantly better than the traditional one-hot encoder, and the SG
embedding performs best overall. One-hot encoding is a technique used to transform categorical data
into numerical data, and it defines categorical data as binary vectors. In this method, each category
is represented as a binary vector with a length equal to the total number of categories. The vector
contains 1 in the position corresponding to the category and 0 elsewhere. SG (Skip-gram) embedding
is a neural network trained to predict the surrounding words given a target word. The experiments
in [17] showed that One-hot encoding is unsuitable for high-cardinality features when using ensemble
learners.

3 Methodology

This paper aims to find which categorical feature encoder impacts the classification model perfor-
mance the most. Consider the multidimensional dataset as an array X = {X; = (zi1,..., Tim), ¢ =
1,...,n} of m-dimensional data points (in general, samples) X; € R™. Data point X; = (x;1, ..., Zim)
is the result of the observation of some object or phenomenon dependent on m features x1, ..., Tm,.
Some of the features are numerical, while others are categorical. In addition, each data point belongs
to some class y;, where the value of y; is the class label of the sample X;. In our case, features
describe particular characteristics of customers’ financial behavior, where we have two classes labeled
by 0 or 1 - Regular/Legitimate and Fraudulent transactions, i.e., the target variable y gets values
vy €{0;1},i=1,...,n.
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3.1 Selection of machine learning algorithms

To evaluate the impact of encoding techniques on the classification algorithms, we select different
models in terms of framework, used loss function, regularization, complexity, and speed. We compare
ensemble learning models with non-linear and linear models. Ensemble learning can be visually ex-
plained as a judgment of the crowd when the decision is taken by voting. A real-life example of a
crowd decision can be a famous TV show named "Who Wants to be a Millionaire". The idea of the
show was to answer fifteen questions in a row correctly and win one million dollars. The participant
had a chance to ask for help for an intelligent friend or audience. The intelligent friend was right
almost 65% of the time. Unexpectedly, the audience of random people was correctly answering 91%
of the time [30]. Ensemble learning can improve the accuracy of a model compared to a single model
by reducing the risk of overfitting and underfitting when combining multiple models. It is also less
sensitive to outliers, and noise [28]. Ensemble learning has a subgroup called gradient-boosting, with
examples like XGBoost, Light GBM, and CatBoost. Ensemble learning is usually built on Decision
trees.

3.1.1 Decision Tree

The abbreviation CART is used for "Classification and Regression Trees" which was introduced by
L. Breiman [4]. CART is a Decision Tree algorithm that recursively partitions data into smaller subsets,
represented by nodes, with the final subsets being represented by leaf nodes. For each partition, the
best splitting feature is selected. This algorithm typically employs Entropy or Gini index to identify
the best feature to split data. Generally, entropy quantifies the degree of uncertainty in the Decision
Tree algorithm. In the context of classification, a partition with low entropy is considered relatively
pure, where the majority of the points have the same label. In contrast, a partition with high entropy
indicates that the class labels are mixed, and there is no clear majority class.

Entropy(D Z p(7) logy p(i

where Entropy(D) is the entropy of some dataset D, where ¢ is the number of classes and p(7) is
the probability of the sample from D to belong to class i. If dataset D is fully pure, i.e., it only has
the same class label, then the entropy is equal to zero. Information gain(IG) is used to determine
whether a given split leads to a decrease in overall entropy.

k
IG = Entropy(D) — Z %Entropy(Dj),
j=1

where k is a number of unique values in the splitting feature, n; is the number of samples in subset D,
and n is the total number of samples D. Entropy(D;) is the entropy of subset D;, which is calculated
in the same way as the entropy of the D. A greater reduction in entropy indicates higher information
gain, leading to better split points.

The Gini index is a measure used for evaluating the purity of a split point as well, and it is defined
as follows:

Gini(D —1—21)

When a partition is pure, the Gini index is 0 because there is only one class, where the probability is
1, and all other classes have a probability of 0. A split may be better if it has a lower weighted Gini
index value, where the weighted Gini index is defined as follows:

k
.
wGini =Y —LGini(D;),
j=1
Trees can grow very large when working with large data sets, and that leads to overfitting. To
mitigate this, we can specify a minimum number of samples in the leaf or decide on the maximum
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depth of the tree. Another technique to mitigate overfitting is called pruning. This procedure prevents
the Decision Tree from growing to its full depth. Pruning involves removing nodes or branches from
the Decision Tree that does not significantly improve the model’s performance. The result is a smaller
and simpler Decision Tree that is less likely to overfit and more likely to generalize well to new, unseen
data. The most significant advantages of a Decision Tree are its simplicity and good performance.

3.1.2 Random Forest

L. Breiman in 2001 [5] introduced a Random Forest algorithm. It is one of the most used ensemble
learning algorithms, primarily for its simplicity and prediction power. [15] showed that Random Forest
can beat other classifiers from 17 families under different kinds of problems by using 121 databases
from UCI. On the other hand, this research does not provide insights and experiments on highly
imbalanced data sets.

A Random Forest is a machine-learning algorithm that combines multiple Decision Trees to make
a final prediction. The number of Decision Trees in a Random Forest is a hyperparameter that can
be set before training the model. Each Decision Tree in the Random Forest is trained on a random
subset of the training data and a random subset of the features. This process is repeated multiple
times to create a diverse set of Decision Trees. The final result is obtained during prediction by
aggregating the predictions of all the individual trees in the forest. The aggregated prediction is either
by taking the majority of individual predictions (for classification) or the mean of the predicted values
(for regression).

3.1.3 XGBoost - eXtreme Gradient Boosting

XGBoost stands for eXtreme Gradient Boosting [13]. The XGBoost classifier algorithm starts by
initializing the model with a single Decision Tree called the base learner. On the other hand, XGBoost
also supports other types of base learners, such as linear models. The base learner is typically a shallow
Decision Tree with few nodes, which serves as a weak learner. The model then calculates the gradient
of the loss function with respect to the predictions made by the base learner. This gradient represents
the direction in which the model needs to update the predictions to reduce the loss. The XGBoost
classifier constructs a new Decision Tree to correct the errors of the base learner. The construction of
this tree is done greedily by iteratively adding nodes that minimize the loss function. The tree is built
by selecting the best-split point at each node based on the gradient of the loss function. Once the new
tree is constructed, the XGBoost classifier updates its predictions by adding the new tree’s predictions
to the previous trees’ predictions. This process is repeated for a fixed number of iterations or until
the model converges to acceptable performance. XGBoost includes several regularization techniques
to prevent overfitting, such as L1 and L2 regularization and tree pruning.

The XGBoost predicted value is as given below [13]:

K
9i = > fu(Xi), fu € F,
k=1

where K is the number of Decision Trees, fi(X;) is the function of input in the k-th Decision Tree,
and F is the set of all possible Classification And Regression Trees (CART).
The loss function of the XGBoost consists of training error and regularization:

n K

L= Uyiti) + > Qfw),

i=1 k=1

1
(fy) =T + A Jul?,

where [ is the loss function, 7" is the number of the leaf nodes, w is the score of the leaf nodes, = is
the leaf penalty coefficient, and A controls the scale of w.
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As the model is trained in an additive way, we can rewrite the loss function as

n

£F =31y, 577 + fo(X2)) + Q(fr)-
i=1

Using second-order approximation (an estimate of the second derivative of the loss function with
respect to each parameter), we can optimize the loss function:

n

£F) ="y, 971 + g6 fu(X0) + %hifz?(l’i)] +Q(fr),
=1

where g; = ag(k—l)l(yi, y}(k_l)) and h; = az(k_l)l(yi, y}(k_l)). The solutions for the optimal values of w
and loss function are [13]

_ Gy

wj_Hj—l-)\’

1L G?
L=—= I 4T

Q;Hj-l-/\_'_ ’

where G; = Zielj gi, Hj = Zielj h;, and I; is the instance set of leaf j.
This greedy optimization makes XBGoost a fast algorithm but does not necessarily lead to the
optimal solution.

3.1.4 LightGBM - Light Gradient Boosting Machine

Gradient Boosting Decision Trees (GBDT) is a machine learning algorithm combining Decision
Trees and gradient boosting to create an ensemble model. Gradient boosting iteratively improves a
model’s predictions by adding new models to the ensemble, each focusing on previously misclassified
examples. GBDT face challenges when dealing with large data samples, and they can require a large
amount of memory, especially when the number of features or trees is high. For each feature, GBDT
requires scanning through all data instances to calculate the information gain (IG) for every potential
split point.

Reducing the number of data instances or features seems like a simple solution to address this
issue. However, it is not a trivial task. No weight is assigned to the data instance in the GBDT, and
the gradient of the loss function is used to update the model in each iteration instead. Data instances
with more significant gradients have a more considerable impact on constructing the Decision Tree. It
means that they also have a more significant influence on the computation of information gain, even
though no exact weight is assigned to each data instance. This conclusion is one of the prominent
uniqueness of the Light GBM [19].

Thus, when undersampling the data instances, we should better keep those instances with large
gradients to maintain the accuracy of information gain estimation and only randomly drop those
instances with slight gradients. The paper [19] proves that the mentioned strategy can increase
information gain estimation accuracy better than uniformly random sampling. This approach is called
Gradient Based One Side Sampling (GOSS).

Additionally, Light GBM implemented Exclusive Feature Bundling (EFB) algorithm. The authors
design an efficient algorithm to solve the optimal bundling problem by reducing it to a graph coloring
problem and solving it using a greedy algorithm with a constant approximation ratio which means
that the solution it produces is always within a constant factor of the optimal solution.

Light GBM can encode categorical features inside the algorithm. However, in this paper, we are
not using this option and feed already encoded data to achieve the goal of the research.

3.1.5 CatBoost - Category Boosting

CatBoost is another boosting algorithm released in 2017 [14] after XGBoost and Light GBM, [25].
CatBoost can automatically handle categorical features by combining one-hot and integer encoding if
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needed. It also uses target encoding to deal with high-cardinality categorical features. However, the
novelty of this method is that it addresses and suggests solutions for solving the prediction-shifting
problem. The solution is called ordered boosting.

CatBoost addresses prediction shifts by creating new datasets at each boosting step, which are
independent of the previous datasets, to obtain unshifted residuals. This is accomplished by applying
the current model to new training examples. No instances may be used for training the previous
models to ensure unbiased residuals for all training examples. In this case, CatBoost maintains a set
of models that differ in the examples used for training. When calculating the residual for a particular
example, CatBoost uses a model that was trained without that example. The random permutation of
the training examples is used to achieve this.

3.1.6 Logistic Regression

Logistic regression is one of the most widespread classical machine learning models, and it is used
in many applications and domains. The reason for its popularity, first of all, is its simplicity and
explainability. Besides that, logistic regression does not require much computational power. On the
other hand, it performs better when the data is linearly separable. It is a machine learning algorithm
based on a statistical model with the binary dependent variable. Logistic regression describes data
and the relationship between one dependent variable and independent variables.

The logistic regression model can be written as follows:

p m
log(+—) = >_ Bjzj,
1_p jzo 77

om0 Bis

P=——m
1+ e2ei=0 3%
where p is the probability that the event will happen. x; are the individual variables, j = 1,..,m and

xo = 1. Logistic regression aims to estimate §;, where j = 0, ..., m.

3.2 Selection of encoding techniques

Most machine learning algorithms are built for numerical data. Hence researchers and developers
must decide how to encode categorical variables. Various encoding techniques exist for this purpose.
They can be grouped based on their relation to the target. Namely, target-based and target-agnostic.
Another way to group encoding techniques is based on their impact on dataset dimensionality. En-
coders like One-Hot or Hashing encoders are the ones that increase the dimensionality of the data set.
Our paper analyzes four target-based and two target-agnostic techniques presented in Fig.1.

Encoders

Target agnostic Target based

Hashing | | James-Stein
Encoder Encoder

M-Estimate

Ordinal Encoder ] Encoder

CatBoost
Encoder

WOE
Encoder

Figure 1: Encoders.
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3.2.1 me-estimate Encoder

m~estimate encoder is a target-based encoder. It has one hyperparameter — m, representing the
power of regularization where a higher value of m results in stronger shrinking. Recommended values
for the m are in the range of 1 to 100. The formula to compute estimated values for a category is [20]:

Ny + Ppriorm
n; +m

Si =

)

where 5; is the encoded value for category ¢, n; is the number of times the category ¢ appears in the
dataset, n;y is the number of times the binary target has value 1 (Y = 1) when the category is 1,
Dprior 18 @ prior probability of Y = 1 without considering categories.

3.2.2 James-Stein Encoder

James-Stein encoder is a target-based encoder as well. Initially, the James-Stein estimator was
not meant to be used for binary classification and was defined only for normal distributions. In our
case, we want to apply it for binary classification, so firstly, we convert the mean target value to the
log-odds ratio.

The James-Stein encoder is a method for shrinking mean estimates only when the variances of
those means are assumed to be equal. However, this assumption is often only valid when the sample
sizes of each group are equal. In most real-world scenarios, sample sizes and variances of the means are
not equal, which makes it difficult to determine the appropriate course of action. For the execution of
the James-Stain encoder, we use the Scikit-learn library Category Encoders, which has implemented
a binary version of the James-Stein encoder proposed in the paper [35]

3.2.3 CatBoost Encoder

CatBoost encoder uses the same formula as the m-estimate encoder. However, it was noticed [25]
that the usage of the whole sample to compute S; leads to a target shift. Permutations of the training
set were suggested in [25]. For the execution, we use the Scikit-learn library Category Encoders, where
the implementation is time-aware (it does not use random permutation).

3.2.4 Weight of Evidence Encoder

The Weight of Evidence (WOE) is a statistical measure that quantifies the strength of the re-
lationship between a categorical variable and a binary target variable. The WOE for a particular
category is calculated by taking the natural logarithm of the ratio of the percentage of observations
in that category that belongs to the class Y = 0 to the percentage of observations in that category
that belongs to the class Y = 1.

WOE; = In20=0

Pi(y=1)
where p;y—g) is percentage of Y = 0 when the category is i; p;y—1) is percentage of ¥’ =1 when the
category is ¢.

3.2.5 Label/Ordinal Encoder

Label/Ordinal encoder is a target-agnostic encoder, and it does not use the statistical information
of the target variable. Label encoder depends on the ordering of the encoded data because it assigns
integer numbers from 0 to k — 1 despite the meaning of the data, where k is the number of different
values of a particular categorical feature. The advantage of this method is its simplicity. However, it
gives an unwanted order and weight for the categories.
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3.2.6 Hashing Encoder

Feature hashing is a technique for converting categorical features into numerical features for ma-
chine learning models. It works by mapping each category of a categorical feature to an integer within
a pre-determined range. The output range is usually smaller than the input range, meaning multi-
ple categories may be mapped to the same integer. Such conditions are called collisions. However,
collisions are often rare in practice and do not significantly affect performance.

Feature hashing is similar to one-hot encoding but with a few key differences. One of the main
advantages of feature hashing is that it allows for control over the output dimensions. Additionally,
feature hashing can be faster and more memory-efficient than one-hot encoding, especially when
dealing with large datasets.

This encoder applies the hashing trick to a categorical feature and then encodes the resulting
integers as numerical features. The basic idea behind the hashing trick is to use a hash function to
map the input data to a fixed-size output space. The hash function takes the input data (e.g., a
word or categorical feature) as input and produces a hash value that is an integer between 0 and a
predefined maximum value.

4 Data used for experiment

The availability of necessary data sets with high volume, velocity, and variety is needed to accelerate
scientific research. Research in the area of fraudulent transactions is limited by data availability. Many
law regulations regarding private data usage exist in the real world, such as GDPR (General Data
Protection Regulation), CCPA (California Consumer Privacy Act), "Act On Payment Services And
Electronic Money", etc. Synthetic data is a promising technology that helps to solve privacy, fairness,
data augmentation, and many other issues.

The definition of synthetic data proposed in [18] is "Synthetic data is data that has been generated
using a purpose-built mathematical model or algorithm, intending to solve a (set of) data science
task(s)."

Synthetic Data plays a vital role in research and developments where data availability is limited
by laws and its nature to be rare. A great application of synthetic data set is presented in [10]. This
synthetic data set is used to generate realistic cyber data for machine learning classifiers for network
intrusion detection systems [10]. The paper [10] concludes that their chosen generative methods -
CTGAN and TVAE - generate synthetic cyber data reasonably well. Nevertheless, ML models trained
with only synthetic data resulted in low classification recall. Further, the authors suggest having at
least 15% of actual data when training the model.

Financial fraud is one of those areas where access to data is very limited. That was the main reason
to work with synthetic data generated by Erik Altman [2]. This data set aims to allow researchers
and developers to work on the data that represents buying habits of U.S. citizens. The dataset is like
a virtual world with customers, merchants, and fraudsters. The data was created so that features
kept their main statistics like mean and standard deviation that would be the same as in the actual
population. But it’s not just averages and standard deviations that are needed. Erik Altman [2] selects
characteristic values for individuals by stochastic sampling, generally from a Gaussian distribution.
The advantage as compared to other synthetic data sets [3] is that the individuals’ activities are
related. For instance, if an individual is in travel mode, he/she will have different spending behavior.
Similarly, the same logic applies if the purchase happens on weekdays or weekends, and much more
evidence that this data set reflects the actual population can be found in the [2].

Another essential thing to be mentioned is that this data set’s virtual credit card world includes
actual banking events like creating the chip in the card. Chips were introduced on a large scale in the
U.S. in 2014 before that magnetic stripe technology was used. After that, it became harder to perform
"card-present" fraud (a transaction in which the fraudster physically presented the stolen credit card
to the merchant).

This data set will be called Dataset1 in the rest of the paper. The study conducted in the paper [6]
involves analyzing this dataset and recommending strategies for achieving balance through clustering.
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By creating smaller and more homogeneous clusters, undersampling methods can be employed without
sacrificing crucial information needed for machine learning algorithms.

The second data source (Dataset2) used for the experiment is also synthetic. The dataset was
generated using the Sparkov Data Generation tool. This data set is smaller than the previous one,
with 1.3 million transactions, of which 0,57% are fraudulent. The generated data set has five categorical
features from eleven in total.

5 Experimental results

Data preparation is one of the essential parts of successful data science research. In the scope of
this research, we are targeting massive datasets with less than a 1% imbalanced ratio. Additionally,
we are interested in the datasets containing categorical features with high cardinality.

Our goal is to find the best-fitting encoder for highly imbalanced massive data, so we are not
hyper-tuning selected machine learning models or changing thresholds. We calculate results using
cross-validation with a stratified split of five-fold. We have performed the cross-validation four times
with different seeds. We believe that by using the Grid Search algorithm, we could achieve better
results in general. For the encoding algorithms, we use default parameters as well. Our focus is on
univariate encoding, where features are always encoded separately.

The experiment aims to analyze and show which encoding methods are best suited for imbalanced
data. Even though LightGBM and CatBoost have their own feature encoding methods inside the
algorithms, we are not comparing these encoding with others as they use optimization strategies. The
results would not be comparable.

Both datasets have categorical features with different cardinality. The cardinality of each categor-
ical feature is presented in Tablel.

| Training set size | 5 969 329
Categorical feature | cardinality
Card Brand 4
Card Type 3 ’ Training set size ‘ 907 672
Has Chip 2 feature cardinality
Use Chip 3 Category of MCC 14
Merchant City 11 391 Gender 2
MCC 109 City 894
Errorl cat 8 State 51
Error2 cat 5 Job 494
G?nder 2 (b) Dataset2
City 1074
State 51

(a) Datasetl

Table 1: Feature cardinality.

Below, we present an example of differences in encoding technique performance by plotting his-
tograms of encoded values of the categorical feature "State" from Datasetl (Fig.2 - Fig.6). The z-axis
represents encoded values, and the y-axis shows the number of cases of the appearance of the partic-
ular encoded value. The maximum histogram of the Label encoder is much lower than that of the
CarBoost encoder. This means that the CatBoost encoder shrinks categorical values, resulting in a
much higher number of cases for a particular encoded value.

Upon analyzing the target-based techniques, it is evident that the encoded values display notable
variability in terms of their size and shape, as represented in the histograms. More specifically, the
James-Stein encoder demonstrates a compact range of values, whereas the WOE encoding method
yields predominantly negative values. Additionally, the CatBoost encoder results in a distribution of
encoded values that are asymmetrically skewed.
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Target-agnostic techniques are not comparable in our case, as the Ordinal encoder does not expand
dataset dimensionality while Hashing encoder does. The histogram of the encoded variable "State"
with an Ordinal encoder represents the frequency of the values encoded with no logical order.
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Figure 2: State encoded using m-estimate encoder.
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Figure 3: State encoded using James-Stein encoder.

Visual comparison of the feature "State" encoded with different encoders can be challenging, owing
to their differing scales. In an attempt to mitigate this challenge, we opt to standardize the encoded
values by scaling them within the range of zero and one. Following, we plotted the density function,
as depicted in Figure 7. This visualization allowed us to easily discern that the James-Stein, M-
estimate, and WOE encoders demonstrate similar shapes and density amplitude. However, their
primary variation lies in their position along the x-axis. Conversely, values encoded with the CatBoost
encoder are characterized by a significant level of skewness, as previously noted. Moreover, we observed
that the encoded values with CatBoost appear to be compressed, as evident from the density function
plot.

We can draw several conclusions based on the presented results in Fig.8 - Fig.9. Firstly, we
can observe that target-based encoding methods outperform target-agnostic ones on Datasetl and
Dataset2. This indicates that incorporating the target in the encoding process can result in better
performance of the machine learning model. Target-based encoding methods allow the model to
capture the relationship between the input features and the target variable more effectively, thus
improving the model’s predictive power. Secondly, the results indicate that logistic regression without
hyper-tuning is unsuitable for highly imbalanced datasets. The performance of the logistic regression
model was very poor for both datasets, indicating that this algorithm is not robust enough to handle
imbalanced data. Therefore, other machine learning algorithms that can handle imbalanced data, such
as gradient boosting machines, should be used in such cases. Finally, we can see from the box plot
on the bars that Light GBM is highly sensitive to encoding techniques. This suggests that choosing
the appropriate encoding method is crucial for achieving optimal performance when using Light GBM.
Therefore, it is essential to experiment with different encoding techniques to identify the best one for
a given dataset and machine learning algorithm.

The results presented in Fig.9 are presented by the encoders used in the machine learning mod-
els. The figure shows that the James-Stein and WOE encoders are consistently chosen as the best-
performing ones across the different machine-learning models. Furthermore, it is worth noting that the
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Figure 7: Density functions of the encoded feature "State" using different encoders.
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Figure 8: Experimental results grouped by models.
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CatBoost encoder performs poorly among the target-based encoding techniques. This suggests that
the CatBoost encoder may not be suitable for imbalanced datasets, as it fails to effectively capture
the relationship between the input features and the target. The performance of the hashing encoder is
consistent with the findings reported in related research [17]. It is important to note that we did not
include the One-Hot encoder in our evaluation. However, it is well known that One-Hot encoding can
lead to growing dimensionality of the dataset, known as the curse of dimensionality. Similarly, hashing
encoding can also increase the dimensionality of the dataset. Therefore, both encoding techniques may
not be optimal choices for datasets with a large number of categorical features and instances.
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Figure 9: Experimental results grouped by encoders.

6 Discussion and Conclusions

Our research aims to determine the most appropriate encoding technique for handling highly
imbalanced datasets. We conducted an experiment to test six encoding methods, both from the
target-agnostic and target-based groups. To conduct the experiment, we utilized various machine-
learning methods, including ensemble learning, as well as linear and non-linear learning. Specifically,
we focused on transaction datasets, where the target variable indicates whether the transaction is
regular or fraudulent. These datasets are complex, with several high-cardinality features.

Several papers have been written regarding this subject matter, showcasing experiments conducted
on publicly accessible balanced datasets. Nevertheless, minimal investigation has been conducted until
now when dealing with highly imbalanced datasets.
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The findings presented in Fig.8 - Fig.9 highlight the importance of selecting the appropriate en-
coding method when working with imbalanced datasets and machine learning algorithms, as well as
the benefits of using target-based encoding methods to improve model performance.

The results presented in Fig.9 suggest that the choice of encoding technique can significantly impact
the performance of the machine learning models. The James-Stein and WOE encoders appear to be
the most effective among the encoding techniques evaluated. Additionally, the CatBoost encoder
may not be suitable for imbalanced datasets. Finally, it is vital to consider the potential curse of
dimensionality of the dataset when using encoding techniques such as hashing and One-Hot encoding.

The discovered properties will lead to the development of more efficient new classification methods
and the improvement of existing ones, e.g., [6] for highly unbalanced financial data.
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