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Abstract

Considering the fuzzy and uncertainty of the evaluation information of the evaluation object,
the type of indicators are expanded into five types of mixed evaluation information, namely, ex-
act number, interval number, triangular fuzzy number, hesitant fuzzy number, and probabilistic
linguistic term sets, and different types of evaluation information are adopted according to the
different characteristics and types of indicators, respectively. When the evaluation information is
hybrid information, the generalized Shapley function based on fuzzy measurement is used to ana-
lyze the interaction between indicators and determine the weights of indicators, considering that
the interaction between indicators is more complicated. In view of the fact that the conversion
of mixed information into the same kind of information will lead to the problem of complicated
calculation and missing information, the VIKOR method is used to comprehensively evaluate the
evaluation objects and select the best ones. Finally, the validity and feasibility of the proposed
method is verified by taking the assessment of data literacy level and competence of teachers in a
university in a western province of China as an example.

Keywords: hybrid multi-attribute decision making; inter-indicator correlation; generalized
shapley function; VIKOR method; data literacy evaluation.

1 Introduction
Designers in the process of designing solutions, such as encountering the uncertainty of the needs

of customers, due to the diversity of customer needs, and involves the designer’s knowledge, design
inspiration, imagination and experience, it is usually more difficult to accurately comprehend the needs
of customers. Therefore, the designer will design a number of programs to meet the conditions, to
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select the best design solutions, to avoid the risk of late design changes, professional program design
will make the customer more recognized. The main goal of the design program is to meet customer
needs. In the process of evaluating the design solutions need to consider the customer needs, so
the evaluation index of the design solutions comprehensively consider the correlation between all the
indicators is very necessary.

The main goal of our evaluation is to meet the needs of our clients. In the process of evaluating
design solutions, customer needs need to be taken into account, so the evaluation indicators of design
solutions are very necessary to synthesize the correlation between all indicators. In fact, there are
inherent characteristics of information complementarity and redundancy between evaluation indica-
tors. The correlation between indicators will have an impact on the ranking results of design schemes
have a significant impact. The ANP and DEMATEL methods are commonly used to analyze the
correlation relationships between system elements. Reference [1] uses the ANP method to analyze the
mutual influence relationship among various decision-making levels, and proposes a bank wealth man-
agement performance evaluation method that combines balanced scorecard and ANP. Reference [2]
proposes a method based on trapezoidal straightness The DEMATEL method for improving percep-
tual fuzzy numbers uses linguistic variables of trapezoidal intuitionistic fuzzy numbers to express the
mutual influence relationship between experts and complex system factors. The ANP and DEMATEL
methods are both methods used by experts to judge the strength of the mutual influence relationship
between indicators based on subjective experience, and then calculate the final matrix of the mutual
influence relationship. However, there are two problems: (1) in the case of bounded rationality, due
to the different subjective experiences of decision-makers, it is difficult to grasp the accuracy of the
correlation relationship between indicators, which can easily lead to inconsistent evaluation results;
(2) Existing literature research has shown that currently these two methods can only analyze the
mutual influence relationship between adjacent indicators, and cannot analyze the mutual influence
relationship between a single indicator and the remaining indicators, which has certain limitations.
Fuzzy measures can analyze the mutual influence relationship between any indicator [3]. Reference
[4] uses the generalized Choquet integral of hesitant fuzzy measure to analyze the mutual influence
relationship between indicators and calculate indicator weights. This article adopts a method based
on λ The generalized Shapley function of fuzzy measure [5] analyzes the correlation between indica-
tors, which can not only analyze the mutual influence relationship between a single indicator and any
remaining indicator set, but also analyze the mutual influence relationship between any indicator set
and any remaining indicator set, making the analysis results more accurate and practical.

The evaluation metrics of the program should take into account both the needs of the client
and the satisfaction of functional requirements, which vary from client to client. Indicator evaluation
information is usually characterized by complexity, vagueness, uncertainty and diversity of information.
Indicator information is usually expressed in the form of interval numbers, semantic values, fuzzy
numbers, etc., so it is meaningful to study the appearance of indicators in the form of multiple
types in the decision matrix. Different types of information are usually transformed into the same
type of information to facilitate the ranking before obtaining the final ranking result. Reference
[6] used triangular fuzzy numbers to deal with the mixed decision-making information generated
by realistic decision-making problems, and improved the ranking ability under mixed information
by considering the relationship and relative balance between alternative performances under multiple
criteria. Reference [7] proposed a new method for solving mixed multi-attribute decision problems with
multiple attribute values by introducing the decision maker’s closeness to the positive ideal solution
and the eclectic variable-weight decision-making method. Due to the complexity and uncertainty of the
real problem and the diversity of various types of information, this paper expands the indicator types
of the design scheme to five types: exact number, interval number, triangular fuzzy number, hesitant
fuzzy number, and probabilistic linguistic term set. Mixed information produces missing information
in the process of transforming into the same information, and the calculation process is complicated.
Reference [8] proposed the idea of modular processing, which categorizes the indicators, and different
types of indicators are processed informationally according to their characteristics, which avoids the
information loss in the process of information transformation. Reference [9] proposed a modular
stochastic VIKOR method to sort the programs, without the need to transform the various types of
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mixed information.
This paper proposes a hybrid multi-attribute decision-making method considering the correlation

relationship between indicators, and experts can use five hybrid representations of exact number, in-
terval number, triangular fuzzy number, hesitant fuzzy number, and probabilistic linguistic term set
to obtain the evaluation information, and adopt different types of evaluation information according
to the characteristics and types of indicators, respectively. Considering that the mixed evaluation
information will lead to a more complicated mutual influence relationship between indicators, the gen-
eralized Shapley function based on λ fuzzy measure is used to analyze the mutual influence relationship
between indicators to determine the weights of each indicator, and combined with the VIKOR method
to assess the data literacy competence of college teachers, and the proposed method is validated by
taking the assessment of the data literacy level and competence of the teachers of a college in one of
the western provinces of China as an example.

2 Preliminaries

2.1 Interval number

Definition 1[10] Let R is the set of real numbers, an interval number can be expressed as r̃ =
[rL, rU ] = {rL ≤ r ≤ rU , r ∈ R}, where rL and rU are the upper and lower bounds of the interval
number. When rL = rU , the interval number r̃ degenerates to an exact number.

Definition 2[10] If r̃1 = [rL
1 , rU

1 ] and r̃2 = [rL
2 , rU

2 ] are two interval numbers, then the Euclidean
distance between them is:

d(r̃1, r̃2) =
√

1
2
[(

rL
1 − rL

2
)2 +

(
rU

1 − rU
2
)2] (1)

2.2 Triangular Fuzzy Number

Definition 3[11] ã = (aL, aM , aU )andb̃ = (bL, bM , bU )are two triangular fuzzy numbers, and the
addition operation of triangular fuzzy numbers is defined as:

ã ⊕ b̃ = (aL, aM , aU ) ⊕ (bL, bM , bU ) = (aL + bL, aM + bM , aU + bU ) (2)

Definition 4[11] The multiplication operation of triangular fuzzy numbers are defined as:

t ⊗ ã = t ⊗ (aL, aM , aU ) = (taL, taM , taU ) (3)

Usually, when calculating the distance between two triangular fuzzy numbers, the traditional Eu-
clidean distance is used to calculate the distance of the triangular fuzzy number. However, relative
preference relationship analysis can also calculate the distance of the triangular fuzzy number. Com-
pared with deblurring, using relative preference relationship analysis to calculate the distance of the
triangular fuzzy number can better reduce the lack of evaluation information[26−27].

Definition 5[12] Let ã = (aL, aM , aU ) and b̃ = (bL, bM , bU )are two triangular fuzzy numbers, the
relative preference relationship between ã and b̃ are defined as:

µp(ã, b̃) = 1
2

(
(aL − bU ) + 2(aM − bM ) + (aU − bL)

2 ∥T∥
+ 1

)
(4)

Where:
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2 + 2(t−
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L ), t+
L − t−

U < 0

t+
L = max{aL, bL}, t+

M = max{aM , bM }, t+
U = max{aU , bU }

t−
L = min{aL, bL}, t−

M = min{aM , bM }, t−
U = min{aU , bU }
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2.3 Hesitant Fuzzy Number

Definition 6[13] Let T is a set sorted from smallest to largest, and the hesitant fuzzy set H is a
mapping function of the set T defined in the interval [ 0, 1 ], and H is denoted as:

H = {(t, hH(t)) |t ∈ T } (5)

Where, hH(t) is the set of different real numbers in [0,1], and is the t possible degree of t ∈ T in
the hesitant fuzzy set H. hH(t) is the fundamental element in the hesitant fuzzy set H. h = hH(t) =
{γ |γ ∈ hH(t)} = H{γ1, γ2, · · · , γl} is a hesitant fuzzy number, γλ ∈ [0, 1], λ = 1, 2, · · · , l, l represent
the number of elements in the hesitant fuzzy number h.

Definition 7[14] For the hesitant fuzzy number h = H{γλ
1 |λ = 1, 2, · · · , l}, let λ+ is the largest

element and λ− is the smallest element. λ̄ = ηλ+ + (1 − η)λ− is a defined number, η is a parameter,
0 < η < 1. The value of the parameter η is chosen by the decision maker from risk appetite, risk
aversion and risk neutrality.

(1) When decision-makers choose risk preferences, η = 1,λ̄ = λ+.Need to increase the maximum
value of elements in h.

(2) When decision-makers choose risk aversion, η = 0,.λ̄ = λ−.Need to increase the minimum value
of elements in h.

(3) When decision-makers choose risk neutrality, η = 1
2 , λ̄ = 1

2(λ+ + λ−). We need to increase the
average value of all elements in h.

Definition 8[15] Let h = H{γλ |λ = 1, 2, · · · , l} is a hesitant fuzzy number, then its score function
is:

S(h) = 1
l
(γ1 + γ2 + · · · + γl) (6)

Drawing on the classical Euclidean distance measure, XU and XIA [15] proposed a distance measure
due to fuzzy Euclidean distance:

dE(h1, h2) =

√√√√1
l

l∑
λ=1

(
γλ

1 − γλ
2
)2 (7)

2.4 Probabilistic language term sets

Decision-making problems in real life, for non-quantitative attributes, it is often difficult to evaluate
such attributes using precise numbers. Literature [13] proposes probabilistic linguistic term sets based
on hesitant fuzzy linguistic term sets, where hesitant fuzzy linguistic term sets give the same degree of
importance to the semantic term set (LTS), and probabilistic linguistic term sets are allowed to have
different weights, i.e., semantic term sets have different degrees of importance in order to avoid the
loss of decision maker’s preference information.

Definition 9[16] Let S = {s0, s1, · · · , sα} is the semantic set, then the set of probabilistic linguistic
terms is:

L(p) =
{

L(k)(p(k))
∣∣∣∣L(k) ∈ S, p(k) ≥ 0, k = 1, 2, · · · , #L(p),

∑#L(p)
k=1

p(k) ≤ 1
}

(8)

whereL(k)(p(k))denotes the probability that the set of linguistic terms L(k)is p(k) and #L(p)is the
number of semantic sets contained in all L(p).

Definition 10[17] Let L(p)1 and L(p)2 are two probabilistic linguistic term sets , L(p)1 ={
L

(k)
1 (p(k)

1 ) |k = 1, 2, · · · , #L(p)1
}

, L(p)2 =
{

L
(k)
2 (p(k)

2 ) |k = 1, 2, · · · , #L(p)2
}

, If#L(p)1 > #L(p)2,
it is necessary to add #L(p)1 − #L(p)2 LTSs to L(p)2, so that the number of elements in L(p)1and
L(p)2 are the same, and increase the smallest LTS in L(p)2with a weight of zero.

Definition 11[16] Let a probabilistic linguistic term set with
#L(p)∑
k=1

p(k) < 1 that It needs to be
normalized:

L̄(p) =
{

L(k)(p̄(k)) |k = 1, 2, · · · , #L(p)
}

(9)
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where p̄(k) = p(k)/
#L(p)∑
k=1

p(k), and L(k)(p̄(k))is ordered from smallest to largest.

Definition 12[16] L
(k)
1 and L

(k)
2 are the k-th element in L(p)1 and L(p)2, respectively. p

(k)
1 and p

(k)
2

denote the weights of L
(k)
1 and L

(k)
2 , respectively, and their distance equations are:

d(L(p)1, L(p)2) =

√√√√√#L(p)1∑
k=1

(p(k)
1 r

(k)
1 − p

(k)
2 r

(k)
2 )2/#L(p)1 (10)

Where, r
(k)
1 and r

(k)
2 denote the subscripts of L

(k)
1 and L

(k)
2 , respectively.

Definition 13[17] Let L(p) =
{

L(k)(p(k)) |k = 1, 2, · · · , #L(p)
}

is a set of probabilistic linguistic
terms, r(k)is the subscript of L(k), and the expression of the score function of L(p)is that:

E(L(p)) = Sᾱ (11)

Where, ᾱ =
#L(p)∑
k=1

r(k)p(k)/
#L(p)∑
k=1

p(k).For the probabilistic semantic sets L(p)1 and L(p)2, if E(L(p)1) >

E(L(p)2),then L(p)1 > L(p)2.

2.5 Normalization of Evaluation Decision Matrix

In response to the evaluation information given by the decision-making experts under each criterion,
the specific form of the data information is portrayed according to the different criteria, the benefit-
type criterion and the cost-type criterion are differentiated, and the evaluated value of each criterion
is normalized, and the methods for the normalization of a variety of different types of evaluation
information are given in the following.

When the evaluation information of attribute Cj is numerical, it is necessary to process the infor-
mation to eliminate dimensional inconsistency. When the evaluation information is yij , standardize it
to obtain ȳij .

If Cj is a cost-type indicator:

ȳij = 1/yij√
n∑

i=1
(1/yij)2

(12)

If Cj is a benefit-type indicator:
ȳij = yij√

n∑
i=1

(yij)2
(13)

When the evaluation information of attribute Cj is an interval number, the normalization method
is as follows:

ȳij = [b∗L
ij , b∗U

ij ] =



bL
ij

/√
m∑

i=1
(bU

ij)2, bU
ij

/√
m∑

i=1
(bL

ij)2

1
/√

(bU
ij)2

m∑
i=1

(1/bL
ij)2, 1

/√
(bL

ij)2
m∑

i=1
(1/bU

ij)2

 (14)

When the criterion values are described by triangular fuzzy numbers, the corresponding normal-
ization equation is

ȳij = (c∗L
ij , c∗M

ij , c∗U
ij ) =



cL
ij

/√
m∑

i=1
(cU

ij)2, cM
ij

/√
m∑

i=1
(cM

ij )2, cU
ij

/√
m∑

i=1
(cL

ij)2,

1
/√

(cU
ij)2

m∑
i=1

(1/cL
ij)2, 1

/√
(cM

ij )2
m∑
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(1/cM

ij )2, 1
/√

(cL
ij)2

m∑
i=1

(1/cU
ij)2,


(15)
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When the criterion values are described by hesitant fuzzy numbers, the corresponding normaliza-
tion formula is

ȳij =
{

hij Cj is a benefit - based indicator
hij Cj is a cost - based indicator (16)

Where, hc
ijdenotes the complement of hij .

When the criterion value is described by the probabilistic linguistic term sets, the data in the
original decision matrix are normalized using the normalization method proposed by Zhu [18], and the
cost-type indicators are transformed into benefit-type indicators, and the corresponding normalization
formula is

ȳij =
{

rij Cj is a benefit - based indicator
−rij Cj is a cost - based indicator (17)

2.6 λ- Fuzzy measure

Definition 15[19] Let X = {x1, x2, · · · , xn} is a non empty set, P (X) is a power set on X,
λ ∈ (−1, +∞), µ : P (X) → [0, 1]. If P (X) satisfies:

(1) µ(φ) = 0, µ(X) = 1;
(2) ∀A, B ∈ P (X),if A ⊂ B, thenµ(A) ≤ µ(B);
(3) µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B). Then µ is said to be aλ- fuzzy measure on X.
From the derivation of the formulaµ(A∪B) = µ(A)+µ(B)+λµ(A)µ(B), we can find that (1) when

λ = 0, we can get the formulaµ(A∪B) = µ(A)+µ(B), at this point µ is additively measurable,that is,
Aand Bare independent of each other; (2) when λ < 0, we can get the formulaµ(A∪B) < µ(A)+µ(B),
at this point µ is a subadditive measure ,there is a cross relationship between A and B, indicating
information redundancy; (3) When λ > 0, the formula µ(A ∪ B) > µ(A) + µ(B)can be obtained, At
this point µis a super-additive measure, i.e., Aand Bare in a mutually complementary relationship.

Various types of extensions based on λ- Fuzzy measures have been applied to the problem of
analyzing the correlation relationship between indicators in multi-attribute decision making[28], let
µ(xi) denote the fuzzy measure, then the fuzzy measure formula of A is:

µ(A) =


1
λ( ∏

xj∈A
[1 + λµ(xj) − 1]), λ ̸= 0∑

xj∈A
µ(xj), λ = 0 (18)

Let A = X, then µ(A) = µ(X) = 1. can be obtained:

λ + 1 =
m∏

j=1
[1 + λµ(xj)], λ > −1andλ ̸= 0 (19)

Definition 16[20] Let the function f is non-negative on the set X, µ is a fuzzy measure, then the
Choquet integration formula based on the λ- fuzzy measure f is:∫

fdµ =
n∑

i=1
f(x(i))[µ(A(i)) − µ(A(i+1))] (20)

The formula for the Shapley function based on the λ- fuzzy measure is:

gs(g, X) =
∑

T ⊆X\S

(n − s − t)! t!
(n − s + 1) ! [µ(S ∪ T ) − µ(T )] (21)

where X denotes the full set of indicators, S denotes a subset in X, X\Sdenotes the difference set
between the set X and the set S, T denotes a subset inX\S, and n, t, and s denote the cardinality of
X, T , and S, respectively.

A comparison of the formulas for the Choquet integral and the Shapley function shows that
Choquet can only analyze the correlation between neighboring indicators, but not the correlation
between any set of indicators, while the Shapley function can analyze the correlation between any set
of indicators.
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3 Evaluation model construction
Let the object to be evaluated as Ai(i = 1, 2, · · · , m) and the evaluation index as Cj(j = 1, 2, · · · , n)

All the indexes are categorized, and the expert Ek(k = 1, 2, · · · , t) evaluates the assessment indexes
of each object according to the indexes’ own attributes by using the exact number, the interval
number, the triangular fuzzy number, the hesitant fuzzy number, and the probabilistic linguistic term
set, respectively. Where, xij is the evaluation information of object Ai on indicator Cj ; m modules
Mj , Mj = (x1j , x2j , · · · , xmj)T ;MN is the exact number type information; M I is the interval type
information; MT is the triangular fuzzy number type information; MF is the hesitation fuzzy number
type information; MP is the probabilistic linguistic term set type information. The matrix X obtained
by normalizing the above information:

X = (xij)n×m = (M1, M2, · · · , Mj) =


x11 x12 · · · x1m

x21 x22 · · · x2m
...

... . . . ...
xn1 xn2 · · · xnm

 (22)

Where, when the evaluation information is of the exact numerical type, xij = yij ; When the
evaluation information is an interval number, xij = r̃ij ; When the evaluation information is a triangular
fuzzy number, xij = ãij ; When the evaluation information is a hesitant fuzzy number, xij = hij ; When
the evaluation information is a set of probabilistic language terms, xij = L(P )ij . Considering the
correlation between the indicators and combining the VIKOR method, the evaluation method is shown
below:

Step 1: Based on the decision matrix provided by the evaluation expert, identify the positive ideal
solution P ∗ = max

1≤i≤n
(xij)and negative ideal solution P − = min

1≤i≤n
(xij) for each requirement indicator.

Step 2: Determine the group benefit Si and maximum individual regret Ri for each evaluation
object.

Si =
m∑

j=1
wi

P ∗ − xij

P ∗ − P − (23)

Ri = max
1≤j≤m

wi
P ∗ − xij

P ∗ − P − (24)

where wi is the weight of each indicator, and the generalized Shapley function is used to analyze
the mutual influence relationship between indicators to obtain the weight wi = {w1, w2, · · · , wn} =
{g1(g, X), g2(g, X), · · · , gn(g, X)}of each indicator.

Step 3: Calculate the comprehensive indicator Qifor each evaluation object.

Qi = v
Si − S−

S∗ − S− + (1 − v) Ri − R−

R∗ − R− (25)

Where, S∗ = max
1≤i≤m

{Si},S− = min
1≤i≤m

{Si};R∗ = max
1≤i≤m

{Ri},R− = min
1≤i≤m

{Ri}; v is the decision
mechanism coefficient. When v > 0.5, it indicates that the decision maker pays more attention to
the whole for decision making; when v = 0.5, it indicates that the decision maker is decision neutral;
when v < 0.5, it indicates that the decision maker pays more attention to the individual regrets and
thus makes decisions.

Step 4: Sort the results according to the ascending order of the composite indicator Qi.
Step 5: Test the compromise solution, A(1) is the compromise solution, which needs to satisfy

both condition I and condition II. A(1)is the object that is sorted in the first place according to the
composite indicatorQ1.

Condition I: Q(A(2) − A(1)) ≥ DQ, DQ = 1
n−1 .

Condition II: Solution A(1)remains in the first place when it is sorted according to group benefit
Si and maximum individual regret Ri.

If the conditions I and II cannot be satisfied simultaneously, a compromise solution is obtained:
(1) If condition II is not satisfied, both A(1)and A(2) are compromise solutions;
(2) If condition I is not satisfied, A(1), A(2), ..., A(x) are all optimal compromise solutions.x is

obtained by the inequalityQ(A(x) − A(1)) < 1
n−1 .



https://doi.org/10.15837/ijccc.2024.3.6515 8

Table 1: Evaluation information
C1 C2 C3 C4 C5 C6

A1 15 [3,4] {7,9,10} H{0.3,0.4,0.5} {(s4,0.3),(s5,0.7)} {(s3,0.7) }
A2 17.5 [3,5] {4,7,8} H{0.4,0.5,0.6} {(s4,0.3),(s5,0.2)} {(s2,0.4),(s4,0.5)}
A3 20 [4,5] {4,5,6} H{0.4,0.5,0.8} {(s3,0.6),(s4,0.4)} {(s3,0.2),(s4,0.6)}
A4 22 [4,5] {5,6,7} H{0.6,0.7} {(s3,0.5),(s4,0.4)} {(s3,0.4),(s4,0.6)}
A5 26 [4,5] {5,7,8} H{0.7,0.8} {(s2,0.7),(s3,0.3)} {(s4,0.4),(s5,0.6)}

Table 2: Evaluation information after standardization
C1 C2 C3 C4 C5 C6

A1 0.568 [3,4] {5,6,7} H{0.3,0.4,0.5} {(s4,0.3),(s5,0.7)} {(s3,0) , (s3,1.0)}
A2 0.487 [3,5] {4,5,6} H{0.4,0.5,0.6} {(s4,0.6),(s5,0.4)} {(s2,0.4),(s4,0.6)}
A3 0.426 [4,5] {4,7,8} H{0.4,0.5,0.8} {(s3,0.6),(s4,0.4)} {(s3,0.25),(s4,0.8)}
A4 0.388 [2,3] {6,7,8} H{0.6,0.7,0.7} {(s3,0.6),(s4,0.4)} {(s3,0.4),(s4,0.6)}
A5 0.328 [4,5] {7,9,10} H{0.7,0.8,0.8} {(s2,0.7),(s3,0.3)} {(s4,0.4),(s5,0.6)}

4 Case studies

4.1 Case

Considering the data literacy evaluation of college teachers, the background of the cases in this
section is taken from reference [21-23]. In order to improve the level and competence of data liter-
acy of our teachers at a university in a province in western China, the university intends to assess
teachers’ data literacy competence in the following six areas: data awareness, data collection and
organisation, data knowledge, data analysis, data application, and data ethics and morals, denoted by
C1,C2,C3,C4,C5,C6, respectively. According to the attribute characteristics of each evaluation index,
the exact number evaluation C1, the interval number evaluation C2, the triangular fuzzy number eval-
uation C3, the hesitant fuzzy number evaluation C4, and the probabilistic linguistic term set evaluation
C5 and C6, respectively, and the evaluation information obtained is shown in Table 1.

Based on equations (12)-(17), combined with the attribute characteristics of the evaluation indi-
cators, the data of each indicator in Table 1 are normalized, and the results of indicator normalization
are shown in Table 2.

According to the method for determining the importance of customer needs in reference [3], the
importance of each indicator is calculated as follows: 0.72, 0.14, 0.13, 0.42, 0.31, 0.28, namely: µ(C1) =
0.72,µ(C2) = 0.14,µ(C3) = 0.13,µ(C4) = 0.42,µ(C5) = 0.31,µ(C6) = 0.28.According to equation (15),
we can get (1 + 0.72λ)(1 + 0.14λ)(1 + 0.13λ)(1 + 0.42λ)(1 + 0.31λ)(1 + 0.28λ) = λ + 1,Solving the
equation gives λ = −0.914. The calculated fuzzy measures are shown in Table 3:

According to equation (18), we can get that: g1(g, X) = 0.405, g2(g, X) = 0.061, g3(g, X) = 0.056,
g4(g, X) = 0.204,g5(g, X) = 0.145,g6(g, X) = 0.129.After analysis, the weights of the indicators are:
w1 = g1(g, X) = 0.405,w2 = g2(g, X) = 0.061,w3 = g3(g, X) = 0.056,w4 = g4(g, X) = 0.204,w5 =
g5(g, X) = 0.145,w6 = g6(g, X) = 0.129.

Table 3: Fuzzy measures of demand indicator sets
fuzzy measure value fuzzy measure value fuzzy measure value fuzzy measure value

µ(C1) 0.72 µ(C3, C5) 0.40 µ(C2, C3, C5) 0.49 µ(C1, C2, C4, C5) 0.95
µ(C2) 0.14 µ(C3, C6) 0.38 µ(C2, C3, C6) 0.47 µ(C1, C2, C4, C6) 0.95
µ(C3) 0.13 µ(C4, C5) 0.61 µ(C2, C4, C5) 0.67 µ(C1, C2, C5, C6) 0.92
µ(C4) 0.42 µ(C4, C6) 0.59 µ(C2, C4, C6) 0.66 µ(C2, C3, C4, C5) 0.72
µ(C5) 0.31 µ(C5, C6) 0.51 µ(C2, C5, C6) 0.59 µ(C2, C3, C4, C6) 0.71
µ(C6) 0.28 µ(C1, C2, C3) 0.81 µ(C3, C4, C5) 0.67 µ(C2, C3, C5, C6) 0.65

µ(C1, C2) 0.77 µ(C1, C2, C4) 0.89 µ(C3, C4, C6) 0.65 µ(C2, C4, C5, C6) 0.78
µ(C1, C3) 0.76 µ(C1, C2, C5) 0.86 µ(C3, C5, C6) 0.58 µ(C3, C4, C5, C6) 0.78
µ(C1, C4) 0.86 µ(C1, C2, C6) 0.85 µ(C4, C5, C6) 0.74 µ(C1, C2, C3, C4, C5) 0.97
µ(C1, C5) 0.83 µ(C1, C3, C4) 0.89 µ(C1, C2, C3, C4) 0.92 µ(C1, C2, C3, C4, C6) 0.96
µ(C1, C6) 0.82 µ(C1, C3, C5) 0.86 µ(C1, C2, C3, C5) 0.89 µ(C1, C3, C4, C5, C6) 0.99
µ(C2, C3) 0.25 µ(C1, C3, C6) 0.85 µ(C1, C2, C3, C6) 0.88 µ(C2, C3, C4, C5, C6) 0.82
µ(C2, C4) 0.51 µ(C1, C4, C5) 0.93 µ(C1, C3, C4, C5) 0.95 µ(C1, C2, C4, C5, C6) 0.99
µ(C2, C5) 0.41 µ(C1, C4, C6) 0.92 µ(C1, C3, C4, C6) 0.94 µ(C1, C2, C3, C5, C6) 0.94
µ(C2, C6) 0.38 µ(C1, C5, C6) 0.90 µ(C1, C3, C5, C6) 0.92 µ(C1, C2, C3, C4, C5, C6) 1.00
µ(C3, C4) 0.50 µ(C2, C3, C4) 0.58 µ(C1, C4, C5, C6) 0.97
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Table 4: Risk Mode Assessment Table
Si rank Ri rank Qi rank

A1 0.363 1 0.146 2 0.017 1
A2 0.469 2 0.137 1 0.272 2
A3 0.593 4 0.239 3 0.686 3
A4 0.595 5 0.305 4 0.813 4
A5 0.572 3 0.405 5 0.950 5

Table 5: ranking table without considering the mutual influence relationship between demand indica-
tors

Si rank Ri rank Qi rank
A1 0.391 1 0.139 2 0.092 1
A2 0.485 2 0.122 1 0.310 2
A3 0.603 5 0.213 3 0.836 3
A4 0.595 4 0.271 4 0.894 4
A5 0.551 3 0.322 5 0.827 5

Combining the weights of the indicators calculated earlier, substituting them into equations (20)-
(21) to calculate the group benefit value Si and the maximum individual regret value Ri of each
evaluated teacher, the specific results are shown in Table 4, on the basis of the group benefit value
Siand the maximum individual regret value Ri, taking v = 0.5, and substituting them into equation
(22) to get the comprehensive evaluation index Qi of each evaluated teacher.

Test the compromise solution, both condition one and condition two are met. Therefore, the
optimal design solution isA1.

4.2 Comparative analysis

(1) When not considering the mutual influence relationship between indicators, i.e. not using a
method based on λ The ranking results obtained from the analysis of the mutual influence relationship
between indicators using the generalized Shapley function of fuzzy measures are shown in Table 5.

The result of the Si ordering isA1 ≻ A2 ≻ A5 ≻ A3 ≻ A4,The ranking result of the method
proposed in this paper isA1 ≻ A2 ≻ A3 ≻ A4 ≻ A5. Through comparison, it can be found that
after analyzing the mutual influence relationship between indicators through the generalized Shapley
function, the weight of the C1 data awareness indicator has increased compared to the weight before the
analysis. This is because data awareness is usually the first element that university teachers prioritize
in data literacy, which is subconscious and spontaneous. Teachers with higher data awareness will
also have corresponding improvements in other indicators. However, when the awareness of data is
relatively low and the effectiveness of other indicators is not significantly reduced, the data literacy
ability of teachers will also decrease. The data awareness indicator will have an impact on other
indicators, so increasing the weight of data awareness is more in line with the actual situation. When
the weight of data awareness indicators increases, the teacher A5 has the strongest data literacy ability,
which can improve their data analysis and application abilities. Therefore, after analyzing the mutual
influence relationship between indicators through the generalized Shapley function, the evaluation
results can be more accurate and more in line with reality.

(2) When the method proposed in this article is not used to evaluate the design scheme, it is
necessary to transform the evaluation information into the same type for comparison. The standardized
evaluation information table obtained is shown in Table 6.

In existing literature models, the consideration of the correlation and indicator correlation in group
decision-making is not sufficient. For example, the model in reference [24] establishes a trust function

Table 6: Evaluation information converted to exact numbers
C1 C2 C3 C4 C5 C6

A1 0.568 0.400 0.717 0.321 0.678 0.394
A2 0.487 0.457 0.533 0.401 0.635 0.409
A3 0.426 0.514 0.410 0.454 0.490 0.493
A4 0.388 0.514 0.492 0.521 0.497 0.473
A5 0.328 0.514 0.553 0.601 0.332 0.605
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Table 7: Ranking results of different models
Evaluate model Ranking of teacher data literacy level and ability

Model in this paper A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5
Reference [24] model A1 ≻ A2 ≻ A5 ≻ A3 ≻ A4
Reference [25] model A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5

based on the principle of information entropy to determine decision weights and gather group decision-
making information. The objective weight of indicators is determined through the entropy method to
avoid attribute switching between indicators. Applying this method to the case study in this article,
the results are shown in Table 7.

From the final ranking results, the literature [24] and this paper have a large deviation in the eval-
uation of A1. On the one hand, when assembling group decision-making information, it does not take
into account the preference association between experts, which makes the weight of individual experts
large, resulting in a certain deviation in the assembly of subjective information. On the other hand,
when determining the weights of evaluation indexes, it is mainly based on the entropy value method
to calculate the objective weights of different evaluation indexes, and does not take into account the
correlation between different indexes, which is also the reason for the discrepancy in the final evalua-
tion results. In this paper, λ-Shapley fuzzy measure is used to measure the fuzzy relationship between
experts, and DEMATEL is introduced into the decision-making model to evaluate the correlation be-
tween indicators and determine the weights, so that the multi-attribute group decision-making model
is more in line with the decision-makers’ evaluation and perception of the complexity of the actual
problem.

When using the generalized Shapley function to analyze the mutual influence relationship between
indicators, the ranking result of the data literacy ability and level of teachers in a certain university
in a western province obtained isA1 ≻ A2 ≻ A4 ≻ A3 ≻ A5.Through comparative analysis, it can
be found that the positions of teachers A3 and A4 have swapped with the positions of the methods
proposed in this article. This is because the mixed information is directly transformed into the same
type of information, and all evaluation information of indicators is converted into accurate numerical
values, the conversion of different semantic information in the process of information aggregation
and transformation will inevitably cause information loss, thereby affecting the accuracy of the final
sorting results. The modular random multi criteria compromise ranking method proposed in this
article divides evaluation information into independent modules, avoiding information loss during the
aggregation process, and obtaining more accurate ranking results that reflect the data literacy ability
and level of teachers.

5 Conclusion
As an important role in talent cultivation, the ability of data literacy is particularly important for

university teachers. This paper proposes a mixed information university teacher data literacy evalua-
tion method that considers the mutual influence between indicators, with the following characteristics:

(1) Expand the types of indicators into five types of mixed evaluation information: precise num-
bers, interval numbers, triangular fuzzy numbers, hesitant fuzzy numbers, and probabilistic language
terminology sets. Different types of evaluation information are used for different properties and types
of indicators.

(2) Considering that the indicators are not independent of each other and the evaluation informa-
tion is mixed, analyzing the correlation between indicators is also more complex. Unlike ANP and
DEMATEL, which can only analyze the mutual influence relationship between adjacent indicators,
this paper analyzes the mutual influence relationship between indicators through a generalized Shapley
function based on fuzzy measures. Using a generalized Shapley function based on fuzzy measures can
analyze the mutual influence relationship between a single indicator and other remaining arbitrary
indicator sets.

(3) In the past, when hybrid evaluation information was aggregated and transformed into the
same type of information, it often resulted in missing information, affecting the accuracy of evaluation
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results. This article adopts a modular approach, categorizes indicators, and aggregates information
using different information processing methods. Then, combined with the VIKOR method, the data
literacy ability and level of teachers in a certain university in the western province were evaluated and
ranked to avoid information loss during the aggregation process.

Finally, taking the evaluation of data literacy ability and level of teachers in a certain university
in a western province as an example, the effectiveness and feasibility of the method proposed in this
article were verified through comparative analysis.
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