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Abstract
A resource administrator (RM) can distribute tasks processing time between heterogeneous

processors is presented. Its design is based on analyzing of the possible forms of attention to
pending tasks and in the previous knowledge about them. A model is proposed based on difference
equations that quantify the resource allocation of each task and choose the best processor where the
task can be executed. The scheme adapts to dynamic changes in the requirements or the number
of tasks.

Keywords: Resource Manager, Constant Band Width Server, Processor Time Assignment,
Diffuse control, real-time systems

1 Introduction
A resource manager (RM) distributes computational resources among several tasks or applications

that must be served at specific time intervals. This is in itself a complex scheduling problem, which is
even more so if it must be done over a heterogeneous multiprocessor platform [3]. The RM presented
in this paper takes into account a heterogeneous multiprocessor platform, uses a Constant Bandwidth
Server (CBS), where the dynamics of both are described by difference equations. The combination of
scheduling algorithms and control theory makes it possible the analysis of the convergence to a fair
allocation of resources among the applications of a real-time control system (RCS) involved, when
starting from an arbitrary initial distribution that is not fair.
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1.1 Symbols and their meanings

The various symbols used in this paper are listed in Table 1.

Table 1: Symbol list

Symbol Meaning
αi application-dependent positive constant i
βi positive constant dependent on the nature of application i, βi ∈ R : (0,∞]
ϵ positive constant, represents a small number of resources assigned or removed in each

iteration; ϵ ∈ R : 0 < i < 1; depends on the number of applications ϵ = 1/n
δ total number of processors δ ∈ N
λi atatic priority of application i; λi ∈ R : [0, 1]
Λi dynamic priority of application i; Λi = λi[fi,k] ∈ R : [−1, 0]; the operator []

is defined in equation (1)
Φh,k rate of change of the nominal equity function; Φh,k = |Fh,i,k|−|Fh,i,k−1|
ΠSi return to s̄i,k to the Si domain
ΠV̄i

return to v̄i,k to the V̄i domain
b processor identifier with greater capacity
csi,k current server budget that attends to application i; csi,k ∈ R : 0 < csi,k < Qsi

Ci nominal execution time of application i

dsi,k deadline of the server that attends to application i; ds,k ∈ R > 0
fi,k matching function of application i at iteration k, which indicates whether the

application is receiving sufficient or insufficient resources, [fh,i,k] ∈ R : [−1, 0] the
operator [] is defined in Equation (1)

Fh,i,k observation or equity function of task i, executed in the h processor that measures the
effect of the other tasks executed in the same processor on task i it in the k iteration;
Fh,i,k ∈ R : [−1, 1]

h processor number h ∈ N
i, j task number identifiers; i, ̸= j; i, j ∈ N
k iteration number; k ∈ N
n total number of tasks; i ∈ N
ph,k remaining capacity of the h processor in the k iteration
Pb processor with the greatest capacity
Ph maximum processor capacity h
Qsi maximum budget of the server handling application i; Qsi ∈ R > 0
ri,k application arrival time i
sh,i,k the service level of application i at iteration k, executed on processor h; it is an

internal state of application i,it depends on the virtual platform assigned to
application i and can only be read/written by the same application,
si ∈ R : si < si < si

si identifier of the server handling application i; si ∈ N > 0
Tsi period of the server that manages application i; Tsi ∈ R > 0
uT,k total capacity available in the system at iteration k

UT total capacity of the system, the sum of the capacities of all processors ∑δ
h=1 P̄h = UT

vh,i,k virtual platform running on processor h, assigned to task i at, iteration k;
vh,i,k ∈ R > 0

v̄h,i,k size of the normalized virtual platform on processor h, assigned to task i at iteration k,
v̄h,i,k = vh,i,k/Ph; v̄h,i,k ∈ R : (0, 1]

wh,j normalized consumption of application j assigned to processor h
w̄i mormalized i application consumption

A couple of operators defined below are also used. The operator [ ] limits the range of its
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argument to [−1, 0] ∈ R and its defined as:

[x] =
{
x si x ≤ 0
0 si x > 0 (1)

The binary operator ⌋x⌈ sends its argument to 1 or 0 as indicated by following definition:

⌋x⌈=
{

0 si x < 0
1 si x ≥ 0 (2)

1.2 Background

In order to carry out a resource distribution, one of the first steps is to define the resources to be
distributed and choose a mathematical abstraction to quantify them. Some authors use the definition
of quality of service [8], which has multiple meanings and perspectives, and that depend specifically
on each application.

Another way to quantify resources is through virtual processors [11], which divide the physical
processor into multiple processors of lower power. This concept stems from the definition of a virtual
private machine introduced by [12]. From this model, [4] and [7] introduce the virtual platform concept,
an abstraction of the processor usage ratio employed in this paper.

It is necessary to isolate tasks temporarily to avoid effects such as resource monopolization or
starvation due to lack of resources. To achieve this, the virtual platform is managed by a process
called a server, where a single server can handle several subsets of tasks, which share resources, a
feature that will be used later for the distribution of tasks among heterogeneous processors.

There are three general RM schemes try to meet the distribution of resources without diminishing
the quality of service, which are centralized, distributed and hybrid [6].

In the centralized scheme, the RM has control over all the resources of each task, which makes
it very stable. However, its numerical complexity grows geometrically with the number of tasks
[4].The distributed scheme, [15], is based on local information from each task that regulates its own
resource consumption by means of a local RM. This scheme’s main weakness is that global resource
distribution can be unstable, since there may be no convergence when allocatnig resources to each
task, and therefore global optimization can never be guaranteed. The hybrid scheme takes advantage
of the centralized and distributed schemes because global resources are distributed through a global
RM, which requires minimum information of tasks. On the other hand, each task regulates its local
resources, with an emphasis on improving its performance [6].

The scheme in Figure 1 shows the RM used in this work, which assigns the proportion of processor
usage, while each application regulates its own level of service. The most important modification with
respect to the scheme shown in [2], is that now we work with heterogeneous processors, which may
involve several aspects, such as memory access capacity and speed, processor or bus speed, etc. [9].
In this paper, processors are considered heterogeneous when they have different processing speeds.

2 Heterogeneous processor management
As mentioned, the task scheduling problem on a homogeneous multiprocessor platform is complex,

and it becomes even more difficult if a heterogeneous platform [9] is considered. Both the model
presented in [7] and the extension presented in [2] were designed for homogeneous processors, i.e., with
the same processing speed. To deal with heterogeneous processors consider that Ph is the capacity of
the processor h and that there must exist an upper bound Pb for this capacity, i.e., Pb > Ph, ; ∀, h.
This makes it possible to define the normalized capacity P̄h as

P̄h = Ph

Pb
≤ 1 (3)

The sum of all normalized speeds results in the maximum system capacity.
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Figure 1: Scheme used in [2], considering a synchronous system with homogeneous processors. The
resource managers regulate the size of virtual platforms, while the CBS is responsible for updating
the consumption and deadlines of the applications.

UT =
δ∑

h=1
P̄h (4)

where δ is the number of processors. It is clear that it is not possible to allocate resources above this
bound, if a feasible operation is to be maintained. To perform the allocation between tasks, we update
the fairness function calculation introduced in [2] as shown in Equation (5), which is modified so that
the maximum platform that can be allocated to a task uses the normalized processor capacity, and to
consider only applications that are running on the same processor as the observed application.

Fh,i,k
.= −(P̄h − v̄h,i,k)λi[fi,k] + v̄h,i,k

∑
l ̸=i

λj [fj,k] (5)

This expression also assumes that the virtual platforms assigned to the processor must have local
feasibility (dependent on the processor capacity); ϵ is a positive variable dependent on the number of
applications,(ϵ = 1/n), in order to guarantee convergence [7].The platforms assigned to the processor
must meet the following feasibility condition:

∑
v̄h,i,k ≤ P̄h (6)

where the platforms are now not normalized with respect to the number of processors but with respect
to Pb, i.e. v̄h,i,k = vh,i,k/Pb.

2.1 System model

The nominal equity level Fh,i,k (Equation 11) is proposed as a dynamic indicator of the resources
allocated to a task. Figure 2 shows the typical behavior of Fi,k as a function of vh,i,k. Positive values of
Fh,i,k indicate lack of resources in the task, while negative values indicate excess of resources. If Fh,i,k

is zero, the resource allocation is fair. Thus, a negative fairness function indicates a resource allocation
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that satisfies the observed task, and the more negative its value, the more slack the processor has to
attend to the task.

Figure 2: Behavior of the nominal fairness equation Fh,i,k against the virtual platform vh,i,k. Fh,i,k

positive indicates lack of resources, on the contrary if it is negative; the application must give up
resources; being on a processor of capacity Ph, the allocated resources cannot exceed the capacity of
that processor. Fh,i,k zero indicates that allocation is fair. The slope of the change depends on the
variable ϵ, which in turn is inversely proportional to the number of applications.

The modified equity function is used to complete the dynamic model as follows (see nomenclature
in Table 1):

v̄h,i,k+1 = v̄h,i,k + ϵFh,i,k (7)
si,k+1 = si,k + ϵfi,k (8)
csi,k+1 = csi,k ⌋(dsi,k − ri,k)Phv̄h,i,kcsi,k⌈

+Qsi ⌋csi,k − (dsi,k − ri,k)Phv̄h,i,k⌈ +Qsi ⌋−csi,k⌈ (9)
dsi,k+1 = dsi,k + Tsi ⌋(dsi,k − ri,k)Phv̄h,i,kcsi,k⌈ + Tsi ⌋−csi,k⌈ (10)

where

Fh,i,k
.= −(P̄h − v̄h,i,k)λi[fi,k] + v̄h,i,k

∑
j ̸=i

λj [fj,k] (11)

fi,k = βi
v̄h,i,k

sh,i,k
− 1 (12)

Ph = P̄hPb (13)
Λi,k = λiFi,k (14)

Figures 3 and 4 show typical behaviors of the evolution of the allocated budget and the service
level for a task, respectively. In the first case, the resource consumption is considered to occur at a
constant rate and the budget is refilled when the deadline is fulfilled. In the case of Figure 4, the
service level evolves until it reaches the minimum si,kmin

required to serve the task under analysis.

Figure 3: Behavior of the budget update, in the figure the consumption is taken as constant, the CBS
is in charge of refilling the budget and postponing the deadline.
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Figure 4: Behavior of service level update versus matching function fi,k.

3 Task assignment
In general terms, the model works as follows. The Ph capacity of the h processor starts to be used

to allocate resources to the tasks that are added by the virtual platforms vh,i,k, where i points to the
task number on the h processor and k to the iteration. As mentioned before, the tasks executed on
processor h must not exceed the processor capacity, i.e.,

nh∑
i=1

vh,i,k ≤ Ph (15)

The remaining, or still available, capacity ph,k on processor h at time k is:

ph,k = Ph −
nh,k∑
i=1

vh,i,k (16)

The remaining capacity for the whole system at the same iteration k is:

uT,k =
δ∑

h=1
ph,k (17)

In order to carry out the resource allocation when a new task arrives, it is assumed that its
consumption is known and four scenarios are considered:

• The task is non-preemptive and it is possible to attend it.
• The task is non-preemptive and it is not possible to attend it.
• The task is preemptive and it is possible to attend it.
• The task is preemptive and it is not possible to attend it.

3.1 Non-preemptive task

If there is capacity to serve a non-preemptive task, the nominal fairness function Fh,i,k is used to
evaluate the impact of the new task on each processor. If the nominal fairness function has a negative
Phik slope, this indicates that processor h would be granting sufficient resources to the task. The more
negative this slope is, the faster the convergence to a fair distribution in the future will be on that
processor. The evaluation of the fairness function is calculated by Equation (5) and the calculation of
its slope as:

Φh,i,k = |Fh,i,k|−|Fh,i,k−1| (18)
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For example, in case of having two processors a and b, Φa,k < Φb,k indicates that processor a will
better serve task i. Furthermore, Fh,i,k < 0 signals that task i has been allocated sufficient resources.

The update of the virtual platform is performed through Equation (7). In case there is no capacity
to attend a new task, it can wait to be attended a certain number of iterations, depending on its
priority λi, or eventually be discarded.

3.2 Preemptive task

In case there is capacity to handle the task on a single processor, it is handled in the same way as
in the non-priority case. In case the entire task cannot be handled on a single processor, it can be split
to be allocated according to the available capacity of the processors ui,c = ph,k, where ui,c is a segment
c of the task i, adapted to use the available capacity of the processor h. This division will be possible
if the consumption of task ui is not greater than the total remaining capacity uT,k = ∑δ

h=1 ph,k. The
lack of capacity is handled the same way as in the previous case.

3.3 Updating of the available capacity

The total available capacity ph,k must be compared with the consumption wh,j of the new task j
assigned to processor h. Both capacities must be normalized with respect to the maximum capacity
of the assigned processor, Ph, therefore it is defined as follows

w̄h,j = wh,j

Ph
(19)

Thus, the update of the available capacity is:

ph,k = Ph −
nh∑
i ̸=j

w̄h,j (20)

ph,k+1 = ph,k − w̄j (21)

where nh is the number of tasks assigned to processor h and wh,j is the consumption of those tasks,
all at iteration k.

3.4 Projection of available capacity

Migrating a task to another processor causes variations in the available capacities, therefore it is
not only necessary to know the capacity used by the task, but also to make a projection of the capacity
that will be released.The remaining capacity projection is obtained from:

p̄rh,k+1 = P̄h −
nh∑
i=1

v̄h,i,k+1 (22)

where nh is the number of applications running on processor h. Note that if there is capacity on
a processor after doing the task allocation, this implies that the system can be planned and the
distribution may converge to a fair allocation.

3.5 Initial task allocation

An initial distribution of the tasks on the processors is needed, in this case the constant βi = αi/Ci

is used, which depends on a constant αi and the nominal execution time Ci of the application i.
If βi < βj implies that application i has higher consumption than application j. Based on these
comparisons, an initial distribution can be made, where applications with lower betai will be assigned
to processors with higher capacity.
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4 Fuzzy modeling
An RM such as the extended Chasparis [2] incorporates nonlinear terms, the presence of which

makes the design of control schemes difficult. One possibility to deal with these nonlinearities, is to
take advantage of the ability of artificial neural networks and fuzzy systems to produce models of
nonlinear systems that approximate with arbitrary accuracy the nonlinear terms, if they have enough
hidden neurons and training data or fuzzy rules, respectively [5].

Here we propose to use a Takagi-Sugeno type fuzzy model [16] which is described by a set of
rules IF − THEN. This fuzzy RM will be able to approximate the nonlinearities of the extended
Chasparis model by a set of linear systems, where for each element it is also possible to design a specific
controller. As in any fuzzy system, the current state of the model has a membership level assigned
for each element of the set of nonlinear systems. Thus, the fuzzy model-controller combination can,
from any arbitrary initial distribution of resources, be brought to a fair distribution, without losing
the closed-loop stability of the approximate system.

In addition to the fuzzy approach, it is proposed to use a distributed RM, which is achieved
by distributing the extended Chasparis model in three subsystems: i) service adjustment; ii) virtual
platform distribution; iii) deadline and budget update (see Figure 5). These subsystems can be treated
as three independent systems to design the control schemes that guarantee their closed-loop stability.
In all cases, the membership functions used will be triangular in shape.

Figure 5: The system is divided into three subsystems, which are linked by a minimum of information.

4.1 Virtual platform distribution

For the distribution of the virtual platform it is necessary to know the value of the matching
function fi of each application, in order to calculate the nominal equity function Fi; substituting
Equation (5) into (7), we obtain:

v̄i+1 = v̄i + ϵ

−(P̄h − v̄h,i,k)λi[fi,k] + v̄h,i,k

∑
l ̸=i

λj [fj,k]

 (23)

The variable premise is defined as

zvi = ϵ

−(P̄h − v̄h,i,k)λi[fi,k] + v̄h,i,k

∑
l ̸=i

λj [fj,k]

 (24)

and membership functions

Mvi1 = 1 − zvi − zvimax

zvimin − zvimax

(25)

Mvi2 = zvi − zvimax

zvimin − zvimax

(26)

These are related to the statements:

• Mvi1 insufficient resources for application i.
• Mvi2 sufficient resources for application i.

and with the maximum vimax and minimum vimin values of the virtual platform i.
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4.2 Service level

The service level adjustment is also carried out within each application since, as mentioned above,
it depends on the nature of the application. For this purpose, maximum simax and minimum simin

service levels must be defined, so that the service level is always between them. The level of service is
calculated from the following equation

ṡi = si + ϵfi = si +
[
ϵ

(
βiδv̄i

si
− 1

)]
(27)

where it can be noted that calculations for application i only require local information. A premise
variable for each application is defined as:

zsi = ϵ

(
βiδ

si
− 1

)
(28)

From this variable premise, two membership functions are defined, which represent the extremes of
the situations in which the service level can be found and that are described by the following equations

Msi1 = 1 − zsi − zsimax

zsimin − zsimax

(29)

Msi2 = zsi − zsimax

zsimin − zsimax

(30)

Each of these membership functions is related to the statements:

• Msi1 maximum service level in application i.
• Msi2 minimum service level in application i.

Table 2: Relationships between the membership functions Mvi1(zvi), Mvi2(zvi), Msi1(zsi), Msi2(zsi);
i = 1, 2, 3, y wvj , j = 1, 2, 3...12 is the quantization of each combination. The form of the linear
systems Avjxv +Bvuv is given in Equation (31)

wvj(z) IF THEN Avjxv +Bvuv

wv1(z) Mv11(zv1) Av1xv +Bvuv

wv2(z) Mv12(zv1) Av2xv +Bvuv

wv3(z) Mv21(zv2) Av3xv +Bvuv
...

...
...

wv11(z) Ms31(zs3) Av11xv +Bvuv

wv12(z) Ms32(zs3) Av12xv +Bvuv

The relationship between the fuzzy rules and the linear systems associated with each one is illus-
trated in Table 2, where the systems Avjxv + Bvuv have the structure of the equation (31), with i
the number of the application and n the total number of these. Since the computation of the vir-
tual platform v̄i and the service level is performed in a distributed manner, the number of rules and
associated linear systems is 4n. In the example of Table 2, n = 3, combining the virtual platform
level and service level rules results in 12 rules associated with 12 linear systems. The structure of
each of these 12 linear systems is shown below, where the differential equations are obtained from the
equations in differences for the virtual platforms and the service levels (see details in [2]). In addition,
n equations for the priority dynamics of each application are also incorporated. Note that the inputs
ui are associated with the fairness functions Fi,k. The structure of the complete system is 1:

1Note that in these equations the processor number is omitted, since as will be explained later, each application will
be assigned to only one processor
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

˙̄v1
...
˙̄vn

ṡ1
...
ṡn

λ̇1
...
λ̇n



=



zv1 · · · 0 0 · · · 0 0 0 0
... . . . ...

... . . . ...
...

...
...

0 0 zvn 0 · · · 0 0 0 0
0 0 0 zs1 · · · 0 0 0 0
0 0 0 0 . . . 0 0 0 0
0 0 0 0 · · · zsn 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1





v̄1
...
v̄n

si
...
sn

λi
...
λn



+



0 · · · 0
0 · · · 0
0 · · · 0

...
1 · · · 0
0 . . . 0
0 · · · 1



uv1
...
uvn

 (31)

To guarantee closed-loop stability, the Fi matrices must be proposed and a matrix P > 0 must be
found that satisfies the following inequality for all Ai matrices [17].

Gii = Ai −BiFi (32)
0 > GT

iiPGii − P (33)

4.3 CBS level

The CBS updates two states, the deadline dsi and the budget csi, according to the following
equations.

ċsi = Qsi ⌋csi − (dsi − ri)δv̄i⌈ +Qsi ⌋−csi⌈ (34)
ḋsi = Tsi ⌋(dsi − ri)δv̄icsi⌈ + Tsi ⌋−csi⌈ (35)

Having two equations, two premise variables are defined per application, making the total number
of combinations 2n∗2, where n is the number of applications.

zcsi = δTsi ⌋csi − (dsi − ri)δv̄i⌈ (36)

zdsi
= 1
δv̄i

⌋(dsi − ri)δv̄icsi⌈ (37)

The membership functions are defined by the equations (38-41)

Mcsi1 = 1 − zcsi − zcsimax

zcsimin − zcsimax

(38)

Mcsi2 = zcsi − zcsimax

zcsimin − zcsimax

(39)

Mdsi1 = 1 − zdsi
− zdsimax

zdsimin
− zdsimax

(40)

Mdsi2 = zdsi
− zdsimax

zdsimin
− zdsimax

(41)

where csimax, csimin, dsimax y dsimin are the maximum and minimum limits of csi y dsi, respectively,
each linked to the following statements:
- Mcsi1 insufficient budget for application i.
- Mcsi2 fill in budget for application i.
- Mdsi1 not required to update application deadline i.
- Mcsi2 update application deadline i.
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The linear systems Acixc +Bcuc have the form of the equation (42):

ċsi

...
ċsn

ḋsi

...
ḋsn


=



1 . . . 0 zdci
· · · 0

... . . . ...
... . . . ...

0 0 1 0 · · · zdcn

0 0 0 zdi
· · · 0

0 0 0 0 . . . 0
0 0 0 0 · · · zdn





csi

...
csn

dsi

...
dsn


+



0 · · · 0
0 · · · 0
0 · · · 0
1 · · · 0
0 . . . 0
0 · · · 1


ui

...
un

 (42)

As in the two previous subsystems, the stability condition stated in [17] must be met to guarantee
closed-loop stability.

5 Results

Figure 6: Gyroscope, reference frame: theta = θ, psi = ψ, phi = ϕ, thetap = θ̇, psip = ψ̇, phip = ϕ̇.

To test the performance of the RM and CBS, a directly configured networked control system (NCS)
of a three-degree-of-freedom gyroscope model is simulated (see Figure 6).

The goal of the NCS is to control two of the three degrees of freedom of the gyroscope, which
correspond to the angles ϕ and ψ in the reference frame shown in Figure 6 and whose dynamic model
is given by [14].

Mb = Jyϕ̈− Jd
x θ̇ψ̇cos(ϕ) + (Jz − Jx)ψ̇2 sin(ϕ) cos(ϕ) (43)

Mr = (Jr
z + Jz cos2(ϕ) + Jx sin2(ϕ))ϕ̈

+ Jd
x θ̇ϕ̇ cos(ϕ) + 2(Jx − Jz)ψ̇ϕ̇ sin(ϕ) cosϕ (44)

The terms composing the equations of motion (43-44) and the value of their parameters given by
the manufacturer [13] are:
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θ : angular velocity of the disk around its own axis of rotation x. θ = 150rad/s.
ϕ : angular position of the blue gimbal suspension about y.
ψ : angular position of the red gimbal suspension over Z.
Jr

z : moment of inertia of the red gimbal suspension about Z axis. Jr
z = 0.0342kgm2.

Jd
z : moment of inertia of the disk about x axis. Jd

z = 0.0056kgm2.
Jx : moment of inertia of the disk and the blue gimbal suspension about x axis. Jx = 0.0074kgm2.
Jy : moment of inertia of the disk and the blue gimbal suspension around the y axis. Jy =

0.0026kgm2.
Jz : moment of inertia of the disk and the blue gimbal suspension around the z axis. Jz =

0.0056kgm2.
Mb : total external torque around the rotation axis of the blue gimbal suspension.
Mr : total external torque around the rotation axis of the red cardan suspension.

The closed-loop control of the gyroscope is also realized through a fuzzy system, details of its
design can be found in [1].

Three non-priority applications are set up in the NCS, each of which is assigned different tasks,
as described in Figure 7. The APP1 is responsible for sensors readout tasks, APP2 for control
signal computation, and APP3 for sending the control signal to the actuators tasks. The RM is
implemented in each of the applications, while the CBS was implemented by a prioritized centralized
task. In addition to performing their assigned tasks, the applications must send over the network the
instantaneous value of their pairing functions fi; i = 1, 2, 3.

Figure 7: NCS system direct configuration, connected to the resource manager, it is observed that the
only information received from the applications is the value of the pairing function fi.

For the first experiment we use the following initial conditions: All virtual platforms are initially
zero, we have three processors with different capacities P1 = 2, P2 = 3, P3 = 4, serving six tasks, with
different requirements. For simplicity, the requirements are ordered with the constant βi. The chosen
values are: β1 = 1 < β2 = 2 < β3 = 3 < β4 = 4 < β5 = 5 < β6 = 6. The results are described below.

In Figure 8a, it can be seen that the platform for APP6 is more demanding than the other
platforms, which is why it takes a much larger amount of resources. Some oscillations are noticeable
due to the resource balancing between the applications, but these tend to decrease as the algorithm
finds a fair resource allocation. In Figure 8b, it is shown that APP3 migrates from processor 1 to 2 in



https://doi.org/10.15837/ijccc.2024.4.6606 13

iteration 4. In processors 2 and 3 there are no migrations because their capacity is greater than that of
processor 1. In Figure 8c, the matching function presents oscillations due to the changes in the virtual
platforms, but also here, when the algorithm approaches a fair distribution, the oscillations decrease.
It should be noted that only APP6 converges to zero in all twenty iterations, so locally APP6 does
not ask for more resources. Finally in Figure 8d it can be seen that despite what we have seen in the
matching function, the fairness function converges to zero for all applications, so it is concluded that
the distribution is fair.

(a) Virtual platform vi,k, case 1. (b) Migration between processors, case 1.

(c) Matching function fi,k, case 1. (d) Nominal fairness function Fi,k, case 1.

Figure 8: Behavior of case 1

For the second experiment, we have the same parameters as in the previous simulation, only the
processor capacity is decreased: All virtual platforms start at zero, we have three processors with
different capacities P1 = 1, P2 = 2, P3 = 3, serving the same six tasks. The results are shown in
Figures 9a-9d. In Figure 9a, it is observed that despite having less capacity, the distribution for
APP6 is equal to case 1, presenting the same oscillations due to the exchange of resources between
applications, however the final distribution of resources of the other applications is more disperse. In
Figure 9b, once again the migration of APP3 from processor 1 to 2 is observed. In Figure 9c, similarly
to case 1, APP6 reaches a satisfaction of its resources since it is only executed by one processor. Finally,
in Figure 9d the matching functions converge again presenting oscillations that tend to decrease as
the algorithm evolves and makes a better balance between the resources assigned to the different
applications, moreover, it is concluded that the distribution is fair.
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(a) Virtual platform vi,k, case 2. (b) Migration between processors, case 2.

(c) Matching function fi,k, case 2. (d) Nominal fairness function Fi, case 2.

Figure 9: Behavior of case 2

Finally, an experiment with similar characteristics to the second case is performed, but using
the homogeneous algorithm and where the three processors have a capacity P = 2. In addition,
the migration of tasks between processors was suppressed. It can be seen in Figure 10a that the
algorithm starts to diverge at the end of the simulation. Given the excess consumption required by
the applications, convergence is not possible. As in the heterogeneous case, there are oscillations
due to the exchange of resources between the applications. The matching function shown in Figure
10b confirms the divergence trend. As the resource demand of the applications is very large, in 20
iterations the algorithm does not reach a fair distribution. Finally, the fairness function in Figure 10c,
shows that it is not possible to reach the convergence to zero that would indicate a fair distribution
and that eventually some tasks do not receive enough resources.

(a) Virtual Platform vi,k, case 3. (b) Matching function fi,k, case 3.

(c) Nominal fairness function Fi, case 3.

Figure 10: Behavior of case 3
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Analyzing the three experiments, it can be seen that in the first case the availability of resources
is higher than the demand by the applications, therefore, the RM can allocate all the requested
resources to all of them. In the second case, the requested resources are closer to the available capacity,
however, the heterogeneity of the processors helps to better cope with the demand for resources and
all applications also receive the necessary resources. In these first two cases, the fairness function
converges to zero, indicating a fair distribution. Finally, in the third experiment, the sum of available
resources on the three processors matches the second experiment, however, the RM can no longer
allocate the necessary resources to all applications, which is indicated by the onset of divergence in
the virtual platforms and the lack of convergence in the fairness function.

6 Conclusions
A model of a RM for heterogeneous processors described by difference equations was presented,

which takes into account the distribution of global and local resources, as well as the behavior of the
CBS. This RM takes into account the performance of the tasks in each processor partition, in case of
not meeting an expected performance, the task can be migrated to another processor or discarded.
A representation by means of RM difference equations was designed in order to obtain a mathematical
description of each component of the system. The equations describe the resource distribution, and
the budget padding of the CBS, as well as the deferral of the deadline.
Simulation results were presented, confirming the feasibility of the proposed scheme and emphasizing
the need to have the minimum resources for its correct execution.
The main disadvantage of this scheme is that the convergence speed is linked to the number of tasks;
the more tasks the convergence tends to be slower, i.e., achieving a fair distribution takes more time.
This could be impractical especially in applications that require real time.
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