
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 19, Issue: 4, Month: August, Year: 2024
Article Number: 6632, https://doi.org/10.15837/ijccc.2024.4.6632

CCC Publications 

IoT Embedded Smart Monitoring System with Edge Machine
Learning for Beehive Management

M. Doinea, I. Trandafir, C. Toma, M. Popa, A. Zamfiroiu

Mihai Doinea
Department of Informatics and Economic Cybernetics
Bucharest University of Economic Studies, Romania
mihai.doinea@ie.ase.ro
*Corresponding author: mihai.doinea@ie.ase.ro

Ioana Trandafir
Bucharest University of Economic Studies, Romania
trandafirioana16@stud.ase.ro

Cristian Toma
Department of Informatics and Economic Cybernetics
Bucharest University of Economic Studies, Romania
cristian.toma@ie.ase.ro

Marius Popa
Department of Informatics and Economic Cybernetics
Bucharest University of Economic Studies, Romania
marius.popa@ie.ase.ro

Alin Zamfiroiu
Department of Informatics and Economic Cybernetics
Bucharest University of Economic Studies, Romania
National Institute for Research & Development in Informatics
alin.zamfiroiu@csie.ase.ro

Abstract
The need of an automated support system that helps beekeepers maintain and improve beehive

population was always a very stressing aspect of their work considering the importance of a healthy
bee population. This paper presents a proof of concept, further referred as a PoC solution, based
on the Internet of Things technology which proposes a smart monitoring system using machine
learning processes, diligently combining the power of edge computing by means of communication
and control. Beehive maintenance is improved, having an optimal state of health due to the Deep
Learning inference triggered at the edge level of devices which processes hive’s noises. All this is
achieved by using IoT sensors to collect data, extract important features and a Tiny ML network for
decision support. Having Machine Learning inference to be performed on low-power microcontroller
devices leads to significant improvements in the autonomy of beekeeping solutions.

Keywords: Machine Learning, Monitoring Solution, Beehive Support, Internet of Things.



https://doi.org/10.15837/ijccc.2024.4.6632 2

1 Introduction
The concept of Edge Machine Learning (Edge ML) is part of the AI – Artificial intelligence and

coagulates all models and techniques used for inferences/classifications/pattern detections on the de-
vices which are on the edge of the platform/solution and not in cloud. If we refer to AI Deep Learning
that involves complex models and neural networks training for pattern recognitions in sound process-
ing or visual computing, then we can choose from a wide variety of options for training and inference
[23]. The training stage of a neural network often occurs within a Machine Learning (ML) Cloud
environment, utilizing various hardware types like CPUs, GPUs, or TPUs across different ML frame-
works, including Keras, TensorFlow, among others [15]. This phase encompasses tasks such as data
pre-processing, transformations, and training, which, while possible to conduct anywhere, are typically
performed on ML Cloud platforms equipped for such operations. Due to their significant resource de-
mands, many machine learning algorithm processes benefit from the powerful computing capabilities
of these platforms. However, one particular process, inference, requires comparatively fewer resources,
offering advantages in scenarios where the execution of this process remotely or in isolated locations
is necessary. This is especially relevant for machine learning edge devices, where stable connections to
ML Cloud systems may not be available, allowing for direct inference [23]. Efficient use of such systems
has been demonstrated through the analysis of diverse sounds from various sources [30], [31]. Con-
ducting sound analysis close to the source enhances sound classification by eliminating noise, thereby
reducing the computational resources required for pre-processing the input data. In [17] the sounds
sources are divided in three important categories, with each one having different characteristics, so
different ways of analyzing and interpreting the results:

(1) Natural – sounds created by natural forces like animal, water or nature.
(2) Mechanical – sounds created by cars or other machines used in transportation or construction.
(3) Human – all sounds produced by human people: music, walking sounds, speaking and so on.
For being able to distinguish between different sound sources an Acoustic Scene Classification

framework for machine learning models was used. According to [50] the ML is used with a higher ac-
curacy than genetic algorithms on designing metasurface for regional control of sound fields. In [33] an
end-to-end convolutional neural network is proposed for detecting emergency situations by analyzing
urban noise. All these sound processing systems that make use of machine learning techniques have a
common denominator when trying to reveal patterns that would otherwise be unable to detect: data
generation, training the model and optimizing the phase gradient according to desired functionality
to fit on an edge computing system.

1.1 Tiny Machine Learning on Edge

Machine Learning on Edge includes personal computers, smartphones and other devices that could
power machine learning algorithms with all included stages. By going further and trying to put ma-
chine learning inside embedded devices that have extremely low-power microcontrollers we experience
what is known as Tiny Machine Learning, or Tiny ML systems. Until recent years, building machine
learning applications meant an exclusive usage of large and complex models that give a very good per-
formance, but are also expensive to build, use and maintain. These large models require a remarkable
amount of computing capabilities, so they are running in dedicated data centers, or they are trans-
lated to the cloud. This causes latency, wastes resources, puts applications at the mercy of connection
speed and generates security concerns. Tiny ML is a cutting-edge technology that takes advantage of
the power brought by machine learning models and the performance of running optimized models on
embedded low-power devices that consume only milliwatts of power. An example of this technology
can be seen in smart speakers like Google Home, where a digital signal processor continuously listens
for the "Ok Google" or "Hey Google" wake words and analyses the sound with a tiny machine learning
model that runs locally, on the device [18], [32]. Traditionally, IoT devices send the collected data to
the cloud, where machine learning models generate insights based on identified patterns. Tiny ML
makes it possible to deploy a trained model on the embedded device. Therefore, inference is executed
on the device itself, without sending raw data to the cloud. By performing the inference on the em-
bedded device, Tiny ML enables greater reliability and reduces the latency associated with sending



https://doi.org/10.15837/ijccc.2024.4.6632 3

large amounts of data to the cloud over a crowded internet network. Reducing data transmissions
over the network has other benefits as well, including energy savings (the cost associated with data
transmission is higher than the cost of inference) and increased privacy [34]. The efficiency of Tiny
ML opens up new ways to analyze and make sense of the substantial amount of data collected by
IoT devices and brings new opportunities that were previously too costly to be implemented, such
as wildlife tracking. Tiny ML offers the same advantages presented above for a smart beekeeping
audio analyzer. By classifying the audio stream on-device and sending over Wi-Fi only the result of
the classification, we save a lot of energy and bandwidth. Furthermore, audio recordings that can
contain the beekeeper’s voice are not transmitted or stored in any servers, which enhances the privacy
of the beekeeper. This new technology also presents some challenges. Specifically, the models must be
small in order to fit within the limitations of MCU class devices (limited CPU power and memory),
consequently limiting the number of neural network layers and nodes or requiring the implementation
of more lightweight machine learning algorithms. These hardware constraints also mean that a Tiny
ML application needs to tackle a specific use case. A full speech recognition model cannot be deployed
on a tiny microcontroller, no matter how much we try to shrink the model, but a model that is able
to recognize certain words is small enough to fit withing the hardware constraints. Another challenge
usually encountered when building Tiny ML models is related to the quantization technique. This
is the process of converting the neural network parameters (weights and biases) from floating-point
values to a lower memory storage such as 8-bit integers for improving the memory footprint, [4]. As a
result, the computational cost and memory requirements of running the neural network are drastically
reduced. This process can lead to a decrease in accuracy, but usually the loss is not significant and
the trade-of is worth trying it. The Edge devices have features which make them suitable for neural
networks inference but not for training. For instance, it is challenging to train an AI neural network
in a device with a few KB of RAM, MCU on 8/16 bits and storage of a few hundreds of KB or 1
MB, versus a dedicated cloud where there is virtualization, several GB of RAM, CPU on 64 bits and
storage of order of several TB. Therefore, on the Edge devices of an IoT solution there is not common
to have ML dedicated hardware or ML dedicated software and the consequence is that on these kinds
of devices only AI neural network inference can take place [52].

1.2 Related Studies and Motivation

Bee colonies all over the world are an important piece in nature’s equilibrium [37] and are constantly
affected by an increasing number of threats [43], most of them caused by humans. Any stress factor
that affects the hive, such as parasites, disease or absence of the queen can have a fatal impact if it’s not
treated in time. Taking this into consideration, it is vital for beekeepers to improve the methods they
use to monitor and take care of their beehives to maximize their productivity and to protect the bees
of these constant threats. Manually inspecting the health and state of the hive disrupts the bees’ work
and can stress them [7]. Furthermore, this activity is time consuming for the beekeeper and he/she
may accidentally hurt the worker bees or the queen during frame manipulations. The limitations of this
approach are felt especially during the winter season, when the beekeeper can observe the beehive only
from outside by checking the surroundings or by analyzing the buzz produced by bees after a gentle tap
on the hive. Continuously monitoring the bee colony state is critical for the beekeeper, so that he can
take the right actions as soon as possible in case of any threats. Smart beehive monitoring system [8],
[35], were designed by combining technologies such as Internet of Things (IoT) and Machine Learning
(ML), that can remotely monitor the beehive and process the acquired parameters to detect its state
[28]. This automated system has the potential to help scientists minimize losses in bee colonies and
beekeepers to successfully manage the hive activity, allowing them to easily monitor the conditions
inside the hives, even when they own dozens, and take the appropriate action on time. Various
beehives monitoring systems have been proposed over the years, mostly relying on different sensors
such as temperature, humidity, weight, gas [51]. These parameters are important and can reveal
very useful information about the hive activity and health, but the most promising parameter is the
sound emitted by bees. Additionally, the sound can be correlated with other parameters and provide
patterns that can differentiate between a normal behavior and a critical situation for the honeybee
colony. Bees use vibrations and sound signals generated by movement and muscle contractions to



https://doi.org/10.15837/ijccc.2024.4.6632 4

communicate inside the beehive [20], [22]. Evaluating beehive acoustics can be also used for detecting
swarm activity which requires an immediate response from the beekeepers. In [49], authors proposed a
machine learning technique based on Hidden Markov models and Gaussian Mixture models to model
the beehive behavior. Although results identified the swarming period with above 80% accuracy
when using 32 Gaussian mixtures per state, this came with higher computation costs compared to 2
Gaussian mixtures per state which provided only 59% accuracy and 8 Gaussian mixtures per state
having 75% accuracy. Sound analysis can reveal valuable information about the state of the colony
and can detect sudden variations in the beehive in a noninvasive manner. Microphones can be placed
in specific positions inside the hive to capture the sound produces by honeybees. Accelerometers can
also be used as an alternative to record the hive vibrations [9]. Various events can be detected based
on the acoustic signature of the beehive at a given time [47]:

• Swarming - Swarming usually occurs when the bee colony exceeds the capacity of the hive, which
becomes overcrowded. The bees produce a younger queen, and the old queen leaves the hive
with a large portion of the worker bees to search for a new home [5], [14].

• Queen hatching – Young queens announce their hatching using tooting and quacking noises.
They make quacking vibrations to announce they are ready to hatch and after they emerge from
their cells, they stop quacking and start tooting [5].

• Missing queen – A hive without a queen is referred to as queen less. Detecting this event
is very important for the beekeeper because a colony can’t survive for a long time without a
queen. Many bee colonies succeed in producing a new queen, but some fail. In this scenario, the
beekeeper can save the colony by installing another queen in the hive [10].

• Sick colony – Honeybees are vulnerable to numerous diseases and some of them are very conta-
gious. It’s important for a beekeeper to be able to detect the signs of diseases in a hive as soon
as possible so he can treat the colony in time.

• Exposure to toxic substances – Honeybees are negatively affected by agrochemicals such as
pesticides, insecticides, or fertilizers. They come in contact with these chemicals when collecting
nectar from plants and they can cause poisoning, disorientation and abnormal behavior [7].

Among all these events, this paper focuses on detecting if the queen is present in the beehive or
if the colony is queen less. This information is valuable for the beekeeper as undetected queen less
state can lead to the colony loss. The queen bee is vital to a beehive because she is the only bee
that lays fertilized eggs and produces pheromones that help to maintain the unity of the colony [19].
Studies have revealed if the level of pollutants have impacted or not the beehive wellbeing based on the
background noise coming from the hive [35]. Honeybees, Apis Mellifera [37], are the most significant
pollinators of food crops, playing a vital role in maintaining food security, ecological balance and
biodiversity in the world. Researchers estimated that a third of the food production depends upon
pollination and that bees are the main contributors in this process [6]. These amazing insects can also
be seen as natural indicators of the health of our environment, and they produce healthy food (honey,
pollen, and royal jelly) and medicinal products that are being used in healthcare (venom, propolis).
Unfortunately, the bee population is on the decline, and this can result in alarming consequences
for the ecosystem. Their extinction is an extremely serious concern and is affecting both managed
and wild colonies alike. According to [12], in most recent years, beekeepers have reported abnormal
colony losses in many parts of the world and there is evidence that wild bee species are also at risk.
The decline in the population of bees has been attributed to numerous causes including the use of
pesticides in agriculture, global warming, the loss of natural habitats and environmental pollution
[27]. As the bee population continues to drop, researchers have started to work on solutions that aim
to monitor and analyze the health of bees with the help of technology. Most losses occur during the
winter, when the bee colony is weaker, and the beekeeper cannot inspect the hive because of the low
temperature that could kill the colony. During this season, it’s a lot more difficult for the beekeeper
to understand what goes on inside his beehives. The beekeeper can observe the hive only from the



https://doi.org/10.15837/ijccc.2024.4.6632 5

outside by checking the surroundings or analyze the buzz produced by bees after a gentle tap on the
hive. The sounds emitted by honeybees can give important clues about the state of the hive, and one
important state that can be analyzed is the presence of the queen bee in the hive. The loss of the queen
bee is a very dangerous event in the beehive, and it requires the intervention of beekeepers. Usually,
the beekeeper needs to manually search for the queen in the beehive during regular inspections. This
activity is very time consuming and can disrupt the normal activity of the hive. The purpose of this
paper is to build an innovative solution that can analyze the sound produced by honeybees using deep
learning in an energy efficient and secure way to determine if the queen bee is present in the hive,
[20]. This solution can help beekeepers to identify vulnerable hives that lost their queens, while also
reducing the unnecessary stress for the honeybees and the effort of the beekeeper to perform manual
inspections. This automated decision helps the beekeeper to maintain the hive in an optimal state of
health and gives it opportunities to grow without too many interventions.

1.3 Proposed solution

The innovation of this paper lies in the integration of a suite of technologies and algorithms aimed
at serving a greater good, by employing Tiny ML to analyze the audio signatures of beehives. In this
paper we analyze and describe how the implementation of an IoT architecture powered by an Edge ML
network can boost the beehive population and help beekeepers act as fast as possible when it comes
to beehive problems. First section focuses on existing solutions that are making use of edge machine
learning, Edge ML, for image and sound processing in general and bee sound noise analysis. The
second section describes the use of convolutional neural networks for beehive management decision
support and the network configuration with all its underlying layers used for the PoC implementation.
Beekeepers are assisted by an Edge ML architecture presented in the third section and used for
analyzing the sound coming from beehives to improve bees’ wellbeing and optimize decision making
processes. In the fourth section we address implementation challenges of this smart IoT embedded
system that uses Edge ML for beehive noise analysis. The data feeds are processed locally, at the
beehive-level, using machine learning techniques and neural networks, to help take decisions without
relying on Cloud resources for additional processing. The last section presents conclusions and future
work, highlighting the importance of the Edge ML.

2 System Architecture for IoT Monitoring Solutions
This section outlines the hardware specifications and the system architecture utilized in the proof

of concept (PoC) solution discussed in this paper, demonstrating the effective deployment of edge
machine learning within the Internet of Things (IoT) domain. By leveraging IoT sensors and devices,
we enhance beehive maintenance, ensuring an optimal health state through deep learning inference
applied directly to the hive noises at the edge. This achievement is facilitated by employing TinyML
to develop the application’s audio analysis functionality. This technology enables Deep Learning
- Machine Learning inference to be performed on a low-power microcontroller device, potentially
leading to a significant improvement in the autonomy of beekeeping solutions. The monitoring system
implements a wireless node that collects data about several parameters of the hive to assess the internal
conditions of a bee colony. The acquired parameters were the temperature and humidity inside the
colony and the weight of the beehive. A microphone was also added to the system, and it was used to
measure the amplitude for certain frequencies of the sounds produced by honeybees. It’s hard for a
beekeeper to correlate the variations in recorded amplitudes with changes produced inside a beehive.
Therefore, a feature that can analyze the sound inside the hive and assess its health status would be
very useful for a beekeeper. The idea is to upload the data collected by all the IoT sensors to a cloud
data center, where it’s further processed by large Artificial Intelligence models. Latest technological
advances enable Machine Learning algorithms to run at the edge, on tiny, resource-constrained devices.
This approach brings a lot of benefits such as energy efficiency, low bandwidth, and enhanced security,
but it also requires developers to be aware of certain device constraints when building the application.
Machine Learning model needs to be small enough to fit the memory constraints of the device it will



https://doi.org/10.15837/ijccc.2024.4.6632 6

be deployed on. The purpose of this study is to analyze the sound produced by honeybees using a
deep learning model that runs on an embedded, low-power device.

2.1 Hardware and Software components

The proposed honeybee monitoring solution is designed to collect relevant data about the beehive,
including the sound emitted by honeybees, analyze it using a tiny neural network that runs on the
acquisition system, and display the status of the hive to the beekeeper. The system allows the
beekeeper to act at the right time to maintain the honeybees healthy, so the solution must be accurate
and reliable. The proposed architecture comprises of five major components:

A. Sensor system – The natural flow of this solution begins in the hive, where the acquisition
system collects relevant data, including temperature, humidity, weight, and sound samples. The sound
is analyzed using an embedded machine learning model and the processed information is published
using the MQTT protocol [26], to a topic.

B. MQTT Broker – The broker receives the payload and transmits it further to the subscribed
clients (the web service).

C. Web Service – The web service subscribes to the topic, receives information that describes the
internal condition of the hive and stores it in the relational database. The web service is also used by
the mobile application to access hive data or to perform other operations on the database (saving or
updating information about the hives).

D. Relational Database – A relational database is used for permanent storage of hive conditions
and for keeping track of the hives, inspections and harvests performed by the beekeeper.

E. Android Application – The mobile application is used by the beekeeper to monitor the bee-
hive internal conditions, to check the queen’s presence and to record relevant information about the
beekeeper’s activity.

Figure 1 presents the main components and the flow of the system architecture.

Figure 1: IoT Monitoring Solution PoC Architecture diagram for the beehive

In terms of hardware components for the sensors system, a set of IoT Embedded devices have
been deployed. The low-power microcontroller chosen for this project is the Arduino Nano 33 BLE
Sense [2]. This board features a 64 MHz CPU, 1 MB of flash memory, 256 RAM and it comes with a
selection of embedded sensors, including a digital microphone, a temperature sensor, and a humidity
sensor. Furthermore, the key feature of this tiny microcontroller is the ability to run Edge Computing
applications on it using Tiny ML [46]. Arduino Nano collects the sensor data, processes the audio
recording, and sends the results to the Wi-Fi Module through the serial port. The Wi-Fi module
is used to publish the data received from the main microcontroller to an MQTT topic. The Wi-Fi
module checks first if it’s connected to the broker before trying to send any data. The hive parameters
are transformed back to floating point values and a json payload is created using the sensor data
and a product key. The product key is a unique identifier for the sensor system placed in each hive.
SparkFun Load Cell Amplifier is used for measuring the weight of the beehive. By connecting the
amplifier to the Arduino board, changes in the resistance of load cells can be read [38]. Precise weight
measurements were obtained after the scale was carefully calibrated.



https://doi.org/10.15837/ijccc.2024.4.6632 7

The MQTT or Message Queuing Telemetry Transport is a lightweight messaging protocol fre-
quently used with IoT devices due to its efficiency and optimized network bandwidth [26]. The
protocol is based on the publish/subscribe pattern, where a client publishes messages on a topic (mes-
sage queue), and consumers subscribe to the MQTT topic to receive those messages. The clients don’t
communicate with one another directly, but instead connect to a broker. In this case an open-source
broker implementation, called Mosquitto, has been used.

There is also NodeJS application acting as a backend component that plays two major, important
roles:

• It’s a RESTful web service that acts as an intermediary between the Android application and
the MySQL database. To perform certain operations on the database like saving or retrieving
hive information, the mobile application sends a request to the NodeJS service. The service
receives the request, performs the operation on the database, and sends a response back to the
mobile application.

• It subscribes to the MQTT topic to receive updates regarding the hive conditions and stores
them in the relational database; the server first connects to the Mosquitto broker, subscribes to
the topic, and listens for incoming messages on the subscribed message queue.

Each time the server receives a message, it verifies the integrity and authenticity of the received
payload by computing the HMAC value based on a previously established secret key (the secret key
is the same in the Huzzah module and the NodeJS server). The hashing function from the algorithm
assures the integrity of the payload and the secret key guarantees the authenticity. If the payload
would have been secured with only a hash value, an attacker could change the payload and recompute
the hash during transmission, so the hash value would still be valid on the server side. The query
returns a row for each parameter type, which corresponds to a value returned by the sensor system.
One by one, each value is saved in the database along with the hive id and the parameter type id. The
hive management information provided by the beekeeper in the mobile application is private and needs
to be properly secured during transmission. Therefore, the system ensures an encrypted connection
between the RESTful web server and the mobile application by implementing an SSL/TLS handshake
protocol communication. Figure 2 shows the activity that displays a list of beehives that are part of
an apiary.

Figure 2: Mobile dashboard for the beehive status

A panel which shows the measured parameters of the bee colony is displayed for each hive that is
equipped with a smart sensor system. Besides the temperature and humidity inside the hive and the
measured weight of the hive, the panel used to display the amplitude for a lower frequency interval
between 200-220 Hz and the amplitude for a higher frequency interval between 400-440 Hz. It would
be difficult even for an experienced beekeeper to correlate the variations in the displayed amplitudes



https://doi.org/10.15837/ijccc.2024.4.6632 8

with changes produced inside the monitored beehive. Now that the sensor system is smart enough
to return a certain result based on the sound analysis, the panel displays the scores for each possible
result: the probability that the queen is present in the hive and the probability that the queen is
missing from the hive based on its acoustics. If the score related to the queen less status is high (over
70%) it means that the beekeeper should inspect that specific beehive and see if the queen is missing
from the hive. If the decision turns out to be a real issue, then the beekeeper can take the proper
action and provide a new queen bee for that beehive.

2.2 Model deployment on edge

Embedded system programming - after converting the model with the compiler provided by Edge
Impulse, the resulted Arduino library had to be deployed on the board. The library was integrated
into an Arduino project that collects the data from the sensors, runs inference on the audio recordings
captured in the hive and sends the results over serial communication to the Wi-Fi module. Every
Arduino sketch is comprised of two main sections: the initialization phase placed in the setup() function
and the main loop that runs continuously and is placed in the loop() function. In the initialization
phase, the serial communication with Feather Huzzah module is established and the transmission
rate is specified at 9600 bits per second. The humidity/temperature sensors and the scale are also
initialized. The scale is calibrated using two parameters: calibration factor and zero factor. These two
values were previously selected to make sure the recorded weight is accurate. Audio processing is also
prepared by initializing the structures used at inference and configuring the Arduino’s microphone.
Finally, the function is verifying if the Feather Huzzah module is successfully connected to Wi-Fi
by checking a flag received from the module. After setup is complete, the sketch runs the loop()
function continuously, where all the operational logic takes place. The sensors collect the data, which
is then processed and sent to the Wi-Fi module. This section of code is repeated every 30 seconds.
Once the microphone has been configured to sample audio at 16 kHz rate, this rate was also used for
the dataset collection, it will continuously read the analog voltage signals that are coming through
the microphone and gets a digital representation into the audio buffer. The readAndAnalyzeSound()
method first waits until the audio buffer is filled up with raw data by the microphone. The microphone
captures a 2 second audio recording from the hive that is further preprocessed and analyzed by the
tiny convolutional model. The buffer is then used to extract features from the audio signal, so the
model can perform the inference process on the generated spectrogram features. The preprocessing
steps happens before the inference process, which is effectively invoking the Tiny ML model. The
classification results are stored in a resulting array structure. Once the system has made an inference,
the classification array is traversed to store the results for each array item associated with the “queen”
and the “queen less” label. The scores are transformed into integer values before being sent to the
Wi-Fi module over the serial port, also known as UART. They are first collected in a byte array using
bitwise operators and then transmitted one byte at a time. Bitwise operators can only be applied
to integer values, and this is why the collected data was transformed into integer after reading. A
flag is transmitted first, to make sure the Huzzah module is synchronized with the Arduino board
and that it doesn’t start reading halfway through the payload. The setup() function in the Wi-Fi
module initializes the UART communication, tries to connect to the Wi-Fi network and transmits
to the Arduino board if the Wireless communication was successfully established. The role of the
Feather Huzzah board is to simply receive the sensor data and to publish the information to an
MQTT topic, to communicate with the NodeJS server. The Huzzah board must establish the Wi-Fi
network communication with an access point first to connect to the broker and to publish the sensor
data to an MQTT topic. Each network can be identified by a Service Set Identifier (SSID), which is
essentially the name of the access point. The easy way to connect the board to an access point is to
hard code the SSID and the password of the Wi-Fi network in the Arduino sketch. Even though this
approach is straightforward and quite simple, it has certain drawbacks. Each sensor system needs to
be re-programmed with the credentials of the user’s Wi-Fi network. The loop() function receives the
data transmitted by the Arduino board, verifies if the module is still connected to the Wi-Fi network
and tries to automatically reconnect otherwise. If the Wireless communication is still active, a payload
that contains the sensor data is published to an MQTT topic.



https://doi.org/10.15837/ijccc.2024.4.6632 9

3 Solution Engineering for Machine Learning Decision Support

3.1 Feature engineering

Determining whether the hive is queenright or queen less is a binary classification problem that
falls under the supervised learning techniques [29]. Data engineering is an important component of
supervised learning and consists of collecting relevant data and preprocessing it to extract relevant
features that can predict the variable of interest. Data collection is a critical and time-consuming
step that can imply active data collection or curation of information from external sources, such as
pre-existing datasets.

There is an existing public dataset [30], for beehive sound recognition that contains audio samples
for queen less and queenright beehives, but we chose to collect our own recordings and go through
various steps like collecting, labeling, verifying, and curating the recordings from a beehive. The
bees were recorded when the queen was present in the hive, and after it was manually removed by a
beekeeper. The bees can recognize if the queen is missing after a few hours because the level of queen
pheromones starts to drop off, which causes a change in their behavior. Therefore, the honeybees were
recorded in different days.

Edge Impulse platform was used during the ML workflow, starting from data collection. This
platform is used for building end-to-end an embedded machine learning model and provides vari-
ous features such as automated data recording, low-code access to preprocessing blocks and leading
algorithms, testing, live classification, and deployment [11].

To get started on building the prototype, a dataset with approximately one hour of audio samples
from both classes has been created: “queen” and “queen less”, that was automatically split between
the training and test datasets. Audio data was collected using the MP34DT05 digital microphone
mounted on the Arduino Nano 33 BLE Sense board. The recordings have different sample lengths,
but they will be further preprocessed in smaller equally chunks, so it doesn’t impact in any way the
process, maintaining the balance between the two classes.

The audio samples were recorded with a sampling rate of 16 kHz, which means that 16 000 data
points were picked up in a second. Training and inference are being performed on 2 second audio data
chunk and not all that information needs to be fed to the network. The raw audio data needs to be
preprocessed before being served as input to the model in the training step. A spectrogram processing
block is used to transform the audio signal received from the hive into an input that is easily digested by
the CNN model when training it. A spectrogram is a better input for a deep learning model compared
to a raw audio signal as the critical features are already extracted and so the neural network doesn’t
need to learn how to do that on its own. The spectrogram is a visual representation of the signal that
shows the frequencies present in the sound and how they are changing over time in amplitude. This
type of preprocessing block works well with audio data for non-voice recognition applications, as well
as any audio signal with continuous frequencies [39]. Figure 3 presents the spectrograms generated
from the audio sample of the colony in the queenright (a) and queen less states (b). From the two
distinct states, it can be observed that the samples recorded when the queen was present in the hive
have a stronger signal than the samples recorded when the hive was queen less.

Figure 3: Spectrogram for (A) Queen right state / (B) Queen less state

To build the spectrogram, each window is first split into several overlapping frames. The length



https://doi.org/10.15837/ijccc.2024.4.6632 10

of each frame was set to 0.02 seconds and the stride between successive frames was 0.01 seconds. The
digital signal in the time domain, time on the X-axis and amplitude on the Y-axis, is transformed into
the frequency domain, frequency on the X-axis and amplitude on the Y-axis, using the Fast Fourier
Transformation (FFT) algorithm [48] where each frame is divided into 128 frequency bands. The FFT
is computed for the whole window to construct the spectrogram. By applying the FFT through a
sliding window procedure the intensity of each frequency can be analyzed over time. The X-axis of
the spectrogram plot represents time, and the Y-axis represents the frequency. The Z-axis, that is
often represented in colors, is the amplitude of each frequency band. The highest frequencies can be
found on the top part of the spectrogram and the lowest frequencies at the bottom.

3.2 Model engineering

In this section, the neural network design is presented, and the model is trained to differentiate
between the sound emitted by a queenright colony and the sound of a queen less colony. One of the most
popular approaches of machine learning is deep learning, which is inspired by the inner workings of
the human brain and works very well on the types of applications suited to microcontrollers [13]. Deep
learning algorithms use neural networks, which are comprised of layers of simulated neurons. These
layers are trained to find patterns in the input data and model relationships with the classification
results. Different architectures of simulated neurons can be used, depending on the task that needs
to be performed. A Convolutional Neural Network (CNN) architecture is used for this audio analysis
task, as it performs very well at extracting meaning from spectrograms, which are basically images.
The particularity of a CNN architecture is given by the convolutional layers, despite the fact that it can
have other types of layers as well, that support with filtering and classification. The algorithm feeds
the spectrogram into the first layer of neurons, which is then transformed based on the internal state
of each neuron. The activations of the first layer are fed into the second layer, and so on, sequentially
transforming the spectrogram’s input into only two numbers: the probability that the audio input
is received from a queenright colony, and the probability that the sound is emitted by a queen less
colony. Although larger models are definitely more powerful and capable, they are not appropriate
in this situation where the model needs to run on a microcontroller, where on-device memory and
processing power are not enough to handle such large neural networks. The board has only 256 KB
of RAM memory and 1MB of CPU Flash memory for storage, which brings certain limitations when
designing the model [42]. Figure 4 presents the neural network architecture and the types of layers
used are described below.

Figure 4: Neural network architecture

The convolution layers are applying filters to an input image to automatically pick out relevant
features. A filter (also called kernel) is a matrix with weights that multiplies the pixels in a filter-
sized window from the input image. The values resulted from the multiplication are then summed,
producing a new value which corresponds to a pixel in the output image. The filter then slides over to
the next set of pixels and repeats the same technique for the entire image, resulting in a new filtered
image. During the training process, the filter weights are automatically updated so that the model
learns what features are most important for distinguishing between the two acoustic signatures. Each



https://doi.org/10.15837/ijccc.2024.4.6632 11

pixel of the output image is passed through the Rectified Linear Unit (ReLU) activation function,
which transforms the negative values from the filtered image to zero. This function helps the network
to decide if a neuron should be activated or not. 2-D convolutions, that involve traversing the entire
image using a small filter, are very time-consuming. The convolutional layers used in this architecture
have one dimension, and this means that the filter only moves along the time axis of the spectrogram
image. The CNN architecture contains two convolutional layers, and the second layer detects features
that are more complex compared to the first layer. The first convolutional layer consists of eight filters
and the spectrogram image is copied to each of these filters. After filtering, max pooling and dropout,
the resulted images are copied to each node of the second convolutional layer. The second layer has 16
filters, and it will generate 128 different images. The output of the convolutional layer is then passed
to a 1-D max pooling layer. A max pooling layer also contains filters, like convolutional layers, but
instead of computing the dot product, the highest number from that window is selected. The filtering
and max pooling layers reduce the size of each filtered image, which saves memory and processing
power. The Dropout layer is added after the max polling layer to prevent overfitting by ignoring some
of the outputs from the previous layer during training. As a result, the network will generalize better
for new spectrograms. The final part of the network is a dense layer that classifies the features. This
layer is expecting a one-dimensional input so the features extracted from the previous layers must
be concatenated and flattened into one array. The layer consists of two nodes corresponding to each
label. The flattened array is copied to each node, that further computes a weighted sum based on
its parameters (weights and biases). The classification layer uses the softmax activation function to
output the probability for each class.

4 Decision Support for Beehive Management Using Convolutional
Neural Networks

The proposed solution presented in this paper, that was also implemented based on an IoT ar-
chitecture powered by Machine Learning algorithms proved to be very efficient when used on beehive
datasets that are hiding patterns such as if the queen bee is present or not in the hive. The solution
uses a convolutional neural network, CNN, that has basically the same configuration as a multilayer
perceptron, MLP [24], [36]. The machine learning model is trained in the cloud with data gathered
from sensors deployed next to the beehives. Then the model is deployed in a Tiny ML architecture
that swiftly analysis beehive parameters and manages to decide on whether it requires assistance or
not from the beekeeper. Figure 5 presents the workflow of the Tiny ML implementation, analyzed
further in this paper.

Figure 5: Tiny ML workflow implemented by the PoC

The machine learning model consists of multi layers that are used to extract feature maps from
the provided inputs, also known as activation maps [16]. The input is passed through each layer
until it’s conveyed in a simpler interpretation. CNN models are very efficient against high resolution
images compared with MLPs that are not capable of easily mapping so many neurons for each image
component. This is the reason why the sound noises coming from the hive are going to be translated
into images called spectrograms that will better reflect the sounds inside the CNN model. If we take
just a 100x100 pixels rasterized bitmap as input to the first layer of a fully connected MLP, the network
will need 10.000 weights for each neuron in the following layer. The structure of a CNN, follows the
same principles as an MLP network, consisting of an input layer; some hidden layers, and an output
layer. The hidden layers are called convolutional layers, they are used to convolve the input, passing
the output to the next layer. Moreover, a CNN can also have a Rectified Linear Unit, RELU [25], that



https://doi.org/10.15837/ijccc.2024.4.6632 12

can help increase the non-linearity of the input image which represents its natural state. Compared
to other types of activation functions such as Sigmoid and Tanh, RELU has the following advantages:

(a) Low computational complexity – uses only a max function compared with exponential calcu-
lation.

(b) Can output a zero value – Sigmoid ant Tanh only manages to approximate.
(c) It has a linear behavior.
Another important component of the CNN is known as the one that reduces the dimensionality of

the feature maps that are created by the convolutional layers, thus reducing the general complexity.
The pooling layers, as they are called, take advantage of the hierarchical patterns that were identified
as feature maps by the convolutional layers, creating other patterns much smaller and simpler that
are embedded in filters. The study employed a four-stage methodology, Figure 6, to develop a model
that utilizes deep learning algorithms and IoT systems to classify beehive noises into two distinct
categories. The initial stage involved collecting data from beehives using sensors installed at their
locations. This data was then collected and pre-processed in the second stage, preparing it for the
third stage, which focused on extracting features essential for building a robust deep-learning model.
The final stage involved deploying this model on edge machine learning devices to perform inference
on newly collected data.

Figure 6: Research methodology

Figure 7 depicts a general model of a CNN, perfectly capable of distinguishing and classifying sound
patterns coming from a beehive. The last layer is the prediction layer which gives the classification
output for the entire network.

Figure 7: Convolutional Neuronal Network used by the PoC

The primary input into this deep learning architecture consists of the spectrograms of the noises
coming from queen less or queenright beehives. The final output tells us if the spectrogram pertains to
one of those two cases, so beekeepers could swiftly act and go on preserving the beehive by adding new
frames with eggs or larvae until the bees are capable of replacing their lost queen or add a new mated
queen. The similarity between Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons
(MLPs) in terms of information flow management stems from their shared foundational principles.



https://doi.org/10.15837/ijccc.2024.4.6632 13

Can be said that a CNN represents a regularized version of an MLP network where the disadvantages
of the last one, in certain contexts, are efficiently resolved, like vanishing and exploding gradients that
may arise in the backpropagation phase of a traditional neural network [3], [44]. In a CNN these
problems are solved using regularized weights with a much smaller number of parameters. Because
an MLP, known also as a fully connected network, uses layers of neurons where each neuron from one
layer connects to all the neurons from the next layer, this makes the network prone to errors, such
as an easily over trained network. Regularization techniques address issues such as the accumulation
of weight in specific network regions, which can lead to neurons activating falsely or not activating
at all. The approach on regularization that CNN models use is that each neuron receives input from
only a restricted area of the previous layer called the neuron’s receptive field, in this way also lowering
the complexity. The dropout component is especially important since it will randomly drop out nodes
during training, also known as the pruning process, [16], which is a highly effective regularization
method to reduce overfitting and improve generalization of errors [40]. In [21] we can see relevant
results of different sound classification techniques based on spectrograms in which CNN leads with
around 73% accuracy, against other proposed systems, as depicted in Figure 8.

Figure 8: Accuracy of different Machine Learning models

In the proposed architecture a 1D Convolutional Neural Network, Conv1D, is used because of how
the data that we want to process is structured. Using Conv1D will allow us to also use less resources
than compared with a 2D or a 3D CNN. The spectrograms are basically structured as a 2D input
data, the time axes and the amplitude of the sound that is coming from the beehive. This type of
input data for non-voice recognition systems is suitable to be fed into a CNN due to its continuous
frequencies over a time period. The proposed architecture is composed of two hidden layers that both
manage to extract relevant features from the spectrograms that were fed in. The first convolutional
layer includes an eight-filter component. To have a look into the convoluting process we need to
present a numerical example based on which the mathematical formalism can be deduced. The CNN
is fed with an array of spectrograms, images that need to be trained in order to get the corresponding
weights for the network. The first layer of the implemented CNN has 8 filters and the second one has
16 filters. The sliding dot product is applied after doing a padding on the initial data both to the
beginning and end of the time series so that we won’t trim the initial data and take every bit of it in
the process of convoluting. Figure 9 reveals a frame window in the convolutional process of the CNN
architecture with the following parameters: filter/kernel of size 3, stride value of size 1.

The hyper parameters for the CNN model that is presented are chosen so that in the end, the CNN
model will output values for two distinct neurons one for each classification class. The MLP layer for
the convolutional neural network will be the one that, after extracting the relevant features from the
spectrograms, will be able to tell if the input is pertaining to a queen less or queenright beehive. In
order to start the mathematical formalism, we will do so by specifying that the spectrogram, x, is of
length m, the filter / kernel, y, is of length n. The output, z, should have the same size as the input.

x = [x0, x1, x2, ..., xm − 1]
y = [y0, y1, y2, ..., yn − 1]
z = [z0, z1, z2, ..., zm − 1]



https://doi.org/10.15837/ijccc.2024.4.6632 14

Figure 9: Frame window in the convolutional process of the CNN with the parameters: filter/kernel
of size 3, stride value of size 1

In order to simplify the notations the kernel size can be expressed as 2p+1 and flip it so that in
the end we should work with the following kernel notation. This is possible because we chose a kernel
that has an odd value.

y = [y−p, y−p+1, ..., y0, ..., yp−1, yp]

So the output, z, is going to be calculated based on the dot product sliding through the input and
kernel with the following formula:

zj =
p∑

k=−p

xj−kyk

Based on the previous output array we can further proceed and apply the max pooling layer having
a stride of value 2 with a window of value 2, as shown in the Figure 10.

Figure 10: Frame window in the convolutional process of the CNN with the parameters: filter/kernel
of size 2, stride value of size 2

For the final computation the CNN with two convolutional layers having the following hyper
parameters: filter size of value 3, stride of value 1, and subsampling, one for each convolutional layer,
pooling MP1 of value 2 and pooling MP2 of value 2, it produces 16 features arrays, each of 23 values,
as depicted in Figure 11.

Figure 11: Frame window in the convolutional process of the CNN with the parameters: filter/kernel
of size 3, stride value of size 1 with 8 and 16 filters

After getting through all the convolutional layers the 16x23 features arrays are flattened into one
single array. The CNN layers are processing the raw 1D audio sample in small chunks, learning how
to extract features that are used in the classification process performed by the MLP layers. The last
MLP layers help the CNN network to classify data using an array of 16*23=368 input values. These



https://doi.org/10.15837/ijccc.2024.4.6632 15

values are passed to a feed forward neural network having a first layer of 19 neurons, with a matrix of
weights of size [368,19], which is fully connected to the output layer with only two neurons for each
classification class. The output neurons finalize the process of prediction using the softmax activation
function that outputs the probability for each class.

5 Results and discussions
The model was trained in Edge Impulse using the TensorFlow framework. TensorFlow is a machine

learning framework developed by Google that is used to build and train especially deep learning models,
and to deploy them in the cloud or to on-premises infrastructures [41]. Data was gathered from a
beehive for a span interval of 3 months, between March and June 2021, when the hive is at its full
throttle. Small 16kHz samples of around 12 seconds each were recorded randomly across different
days when queen was present or removed from the beehive. A total of approximately one hour of
recording time was done for each beehive consisting of around 300 samples split into 75% for training
and 25% used for testing. This accounts roughly for a total of 23 minutes (queen) and 23 minutes
(queenless) time in 227 training samples and 10 minutes (queen) and 4 minutes (queenless) time in
73 testing samples. The model is trained for 100 epochs, using a learning rate of 0.005. During
the training process, the parameters associated with each neuron are gradually tweaked, so that the
layers transform the spectrogram input in the right ways to produce the correct output. This is
accomplished by feeding into the network a training sample, determining how far the output is from
the correct response, and updating the neuron’s parameters to increase the likelihood of producing a
correct answer next time. The loss function used in training the model is the categorical cross entropy
function, which is applied in classification tasks. Its aim is to calculate the difference between the
two probability distributions: the output predictions and the target predictions. The results of the
inference process, Figure 12 (right), which was subsequently performed on the beehive received data
had similar results with the training process of which pattern distribution is presented in Figure 12
(left). The ratio of correctly predicted positive observations to the total predicted positive, known
also as the precision was around 97%. The ratio of correctly predicted positive observations out of all
the observation predicted, known as the recall rate was at 98%. Finally, the F1 score, that combines
both of the previous metrics was 0.98.

Figure 12: Distribution model for Training (left side) / Inference (right side)

TensorFlow models can run on powerful servers, but they don’t fit on tiny microcontrollers. The
model can be converted to a TensorFlow Lite format, that was specially designed to run on mobile
platforms and embedded devices [46]. Therefore, once the training process is done, the model is
converted using the TensorFlow Lite Converter. The converter’s job is to compress the model into a
format that it’s suitable for running on constrained devices. It begins by pruning the model, which
entails simplifying the model by removing memory-consuming elements from the network that may not
have a major impact in the final result: for example, removing synapses that don’t result in a drastic
loss of accuracy, [16]. A special optimization called quantization is also applied by the converter to
help reduce the size of the model and make it run faster. Quantization is the process of recasting the
model’s weights and biases from high-memory data storage such as float32 to a lower memory storage
such as int8, without a significant loss in accuracy. Figure 12 shows the accuracy of the model after
the training processed ended and the model was quantized.

The confusion matrix shows the balance between the audio windows correctly classified and the
ones that were incorrectly classified. It represents the performance of the model in terms of number



https://doi.org/10.15837/ijccc.2024.4.6632 16

Figure 13: Model accuracy

of false positives and false negatives, Figure 13, stressing very well that the model performs better
when the queen is not present which is actually what should be inspected further by the beekeepers
compared with when the bee queen is present and the prediction says it is not.

Figure 14: Confusion matrix

Before starting the training process, 25% of the training data was put aside for validation. The
validation dataset was used to compute the model’s performance after each training step and to fine-
tune the model parameters. This score is a more reliable measure since the model was not aware of the
data during the training process. The validation results are shown in the panel above, which provides
important details about how well the model is performing. The model has an accuracy of 98.3%, which
represents the percentage of spectrograms that were correctly classified. The model was also validated
against the test dataset, to be sure that it did not overfit both the training and validation samples.
The board obtained after classifying the samples in the testing dataset also provide the accuracy and
the confusion matrix. According to Figure 14, the model also performed well on the testing audio
samples.

Figure 15: Test model validation

A comparable study was conducted on a low-energy architecture to analyze and monitor beehive
acoustics, comparing deep learning and standard machine learning techniques. The results presented in
[45] indicate that CNNs performed better on raw audio data compared to spectrogram analysis, while
spectrogram analysis outperformed all standard machine learning models such as KNN, SVM, and
Random Forest. Notably, the deep learning approach for raw sound analysis required around 80 hours
of training, whereas spectrogram analysis included an additional step of converting raw sound into
images. Despite this, the inference process on a low-energy system showed that spectrogram analysis
outperformed traditional machine learning models but was comparable with raw sound classification.
Because of their ability to bypass the learning of critical features, those being extracted when creating
the spectrogram, the CNN with spectrogram analysis is an advantageous method for its ability to
reduce background noise through image preprocessing and filtering before training and classification
is done. After converting the model in an optimized format and evaluating its performance, the trained
neural network was converted into an Arduino Library using Edge Impulse. The neural network was



https://doi.org/10.15837/ijccc.2024.4.6632 17

compiled to C++ source code using the EON Compiler. This new compiler uses TensorFlow Lite for
Microcontrollers under the hood and reduces the RAM and flash memory needed to run the model
on the embedded device. The inference time for analyzing two seconds of data (estimated by default
for ST IoT Discovery Kit) was 51ms and the model required 28KB of RAM to perform the inference.
Therefore, the converted model fits quite well the restrictions of the Arduino microcontroller.

6 Conclusions
Hive acoustics can reveal useful information about the health status of bees. This study used the

sound produced by a honeybee colony to build a system that can automatically determine whether
the queen is present in the hive, allowing the beekeeper to easily monitor its state and take the proper
action in a timely manner. A deep learning model was trained and optimized using Tiny ML, providing
a very good performance in accuracy, size, and inference time. This paper presented every step of the
workflow, from dataset collection until model deployment and integration with the server and mobile
application. The study confirms that the audio signatures of queenright and queen less colonies can be
distinguished by a smaller model, deployed on a tiny microcontroller. This approach is energy efficient
since the system doesn’t constantly send audio recordings to cloud and enhances the privacy of the
beekeeper. However, building an accurate and reliable model that will perform well in production
is quite challenging since hives are complex environments. For example, some analyzed beehives can
have undetected issues that can cause the model to misinterpret the data. Another possible issue is the
human error during dataset collection or the labeling of audio samples, since the person responsible
for these tasks must have beekeeping experience and should recognize the behavior of queenright and
queen less colonies. Honeybee colonies don’t react in the same way when they lose their queen bee,
and their behavior can vary from hive to hive, and even from one day to another. This could prove
to be an issue in the presented study since the data was collected from one single hive for a not so
long amount of time. This solution was designed as a proof of concept, but it can be improved by
devoting more time and effort to developing a more reliable classification model. This can be achieved
by collecting more data from different hives, which will improve its ability to generalize on new, unseen
hives. Additionally, a better approach would be to record the hives automatically and to send the
recordings to a server for a longer period of time, maybe even a year. This will help to gather a wider
distribution of training samples, that would improve the resilience of the network to differences in
the sound produced by the colony caused by seasonal changes in the honeybees’ behavior. Another
possible challenge would be to integrate additional parameters in the model, such as the temperature
and the relative humidity. In order to see if these parameters are significant in detecting the beehive
status, data should be collected with these additional factors and the model can be retrained and
compared to the previous model. If the new model performs betters, then the additional parameters
are relevant, and they should be kept in the model. If the parameters are not relevant, the model
needs to learn to ignore the irrelevant information, and it may be prone to making false associations
– maybe the hive lost its queen during winter when the temperature was lower. A better microphone
can be used, that is more sensitive to the frequencies of the honeybees’ sound and maybe a pass-band
filter that blocks the frequencies which are outside of a specified limit, focusing on the range of interest.
Additionally, the system can learn to detect other critical states of the beehive like swarming or the
exposure to toxic substances. Therefore, more data can be collected from hives that present various
anomalies to create a model able to provide a general health status. Technology platform wise the
solution can be improved to use distributed training of neural network with Apache Spark. For this
action, the solution exports the neural network model from Python Keras in Java deeplearning4j and
use Apache Spark for training. After the training process is successfully accomplished, the neural
network model can be imported back in Jupyter, in order to translate with Tensorflow Lite into the
model for inference on C/C++ Arduino. As a final thought, the presented system can be seen as
an affordable solution for analyzing the acoustic signature of a honeybee colony in order to detect its
state and to help beekeepers react promptly by replacing the queen in case of need.



https://doi.org/10.15837/ijccc.2024.4.6632 18

References
[1] Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A. S.; (2023). A

comprehensive survey on tinyml, 2023 IEEE Access

[2] [Online]. Arduino, Available: https://store.arduino.cc/arduino-nano-33-ble-sense. [Accessed 9
April 2024]

[3] Balas, V. E., Kumar, R., & Srivastava, R. (Eds.). (2020). Recent trends and advances in artificial
intelligence and internet of things. Cham: Springer International Publishing. ISBN 978-3-030-
32644-9. 2020.

[4] Banner, R., Hubara, I., Hoffer, E. & Soudry, D. (2018). Scalable methods for 8-bit training of
neural networks. Advances in neural information processing systems

[5] Bencsik, M., Bencsik, J., Baxter, M., Lucian, A., Romieu, J., & Millet, M. (2011). Identification
of the honey bee swarming process by analysing the time course of hive vibrations. Computers
and electronics in agriculture 76(1), 44-50. 2011.

[6] Berkeley, U. o. C. (2006). Pollinators Help One-third Of The World’s Food Crop Production. Sci-
enceDaily. [Online]. Available: www.sciencedaily.com/releases/2006/10/061025165904.htm, [Ac-
cessed 9 April 2024]

[7] Bromenshenk, J. J., Henderson, C. B., Seccomb, R. A., Rice, S. D., & Etter, R. T. (2009). U.S.
Patent and Trademark Office. Patent US20070224914A1 U.S. Patent No. 7, 549,907. Washington,
DC

[8] Cecchi, S., Spinsante, S., Terenzi, A., & Orcioni, S. (2020). A smart sensor-based measurement
system for advanced bee hive monitoring. Sensors. 20(9), 2726. 2020.

[9] Cecchi, S., Terenzi, A., Orcioni, S., Riolo, P., Ruschioni, S., & Isidoro, N. (2018, May). A pre-
liminary study of sounds emitted by honey bees in a beehive. 2018 In Audio Engineering Society
Convention 144. Audio Engineering Society.

[10] Cejrowski, T., Szymański, J., Mora, H., & Gil, D. (2018). Detection of the bee queen presence
using sound analysis. Proceedings of Intelligent Information and Database Systems 10th Asian
Conference, ACIIDS 2018, Dong Hoi City, Vietnam, March 19-21, 2018, Part II 10 (pp. 297-306).
Springer International Publishing. 2018.

[11] Edge Impulse Democratizes Machine Learning for All Developers on NVIDIA Jetson Edge AI
Platform, Edge Impulse. [Online]. Available: https://www.prnewswire.com/news-releases/edge-
impulse-democratizes-machine-learning-for-all-developers-on-nvidia-jetson-edge-ai-platform-
301269308.html. [Accessed 9 April 2024]

[12] Europa.eu, "What’s behind the decline in bees and other pollinators?," [Online]. Avail-
able: https://www.europarl.europa.eu/news/en/headlines/society/20191129STO67758/what-s-
behind-the-decline-in-bees-and-other-pollinators-infographic. [Accessed 18 April 2024]

[13] Feed Forward Neural Webpage – “Deep Learning: Feedforward Neural Network. [On-
line]. Available: https://medium.com/hackernoon/deep-learning-feedforward-neural-networks-
explained-c34ae3f084f1. [Accessed 9 April 2024]

[14] Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in
bee hives for early detection of the swarming period. Computers and electronics in agriculture
64(1), 72-77. 2008.

[15] Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly
Media, Inc.. Release Date: September 2019, ISBN: 9781492032649. 2022.



https://doi.org/10.15837/ijccc.2024.4.6632 19

[16] Gholami, Amir; Kim, Sehoon; Zhen, Dong; Yao, Zhewei; Mahoney, Michael; Keutzer, Kurt.
(2022). A Survey of Quantization Methods for Efficient Neural Network Inference. Low-Power
Computer Vision 36 pg., eISBN 9781003162810, doi: 10.1201/9781003162810-13.

[17] Green, M.; Murphy, D. (2020). Environmental sound monitoring using machine learning on mobile
devices. Applied Acoustics. 159, 107041, 2020.

[18] Google A.I. Cloud. [Online]. Available: https://cloud.google.com/ai-platform. [Accessed 21 March
2024]

[19] Honey Bee Queens: Evaluating the Most Important Colony Member. BEE-HEALTH, 18 Au-
gust 2015. [Online]. Available: https://bee-health.extension.org/honey-bee-queens-evaluating-
the-most-important-colony-member/. [Accessed 21 March 2024]

[20] Howard, D. Duran, O. Hunter G. and Stebel K. (2013). Signal processing the acoustics of honey-
bees (APIS MELLIFERA) to identify the "queen less" state in Hives. Proceedings of the Institute
of Acoustics. 35. 290-297.

[21] Khamparia, A.; Gupta, D.; Nguyen, N. G.; Khanna, A.; Pandey, B.; Tiwari, P. (2019). Sound
classification using convolutional neural network and tensor deep stacking network. IEEE Access
7, 7717-7727., Date of Publication: 08 January 2019, Electronic ISSN: 2169-3536. 2019.

[22] Kirchner, W. H. (1993). Acoustical communication in honeybees Apidologie 24(3), 1993.

[23] Koul, A., Ganju, S.; Kasam, M. (2019). Practical deep learning for cloud, mobile, and edge: real-
world AI & computer-vision projects using Python, Keras & Tensorflow. O’Reilly Media Release
Date: October 2019, ISBN: 9781492034865.

[24] Liang, J., Zhao, X., Li, M., Zhang, Z., Wang, W., Liu, H.,; Liu, Z. (2023, April). MMMLP:
multi-modal multilayer perceptron for sequential recommendations. Proceedings of the ACM Web
Conference (pp. 1109-1117). 2023.

[25] Mao, X.; Xiang, Y.; Lu, J. (2024). An efficient nonlinear adaptive filter algorithm based on the
rectified linear unit. Digital Signal Processing 104373. 2024

[26] MQTT: The Standard for IoT Messaging. [Online]. Available: https://mqtt.org/. [Accessed 28
March 2024]

[27] Murphy, F. E., Magno, M., Whelan, P.; Vici, E. P. (2015). b+ WSN: Smart beehive for agriculture,
environmental, and honey bee health monitoring—Preliminary results and analysis. In 2015 IEEE
sensors applications symposium (SAS) pp. 1-6, IEEE 2015

[28] Murphy, F. E., Popovici, E., Whelan, P.; Magno, M. (2015). Development of an heterogeneous
wireless sensor network for instrumentation and analysis of beehives. In Proceedings 2015 IEEE
International Instrumentation and Measurement Technology Conference (I2MTC) pp. 346-351.
IEEE. 2015

[29] Nettleton, D. F., Orriols-Puig, A., Fornells, A. (2010). A study of the effect of different types of
noise on the precision of supervised learning techniques. Artificial intelligence review 33, 275-306.
2010.

[30] Nolasco, I.; Benetos, E. (2018). To bee or not to bee: An annotated dataset for beehive sound
recognition. [Data set], Zenodo https://doi.org/10.5281/zenodo.1321278, 2018.

[31] Nolasco, I., Benetos, E. (2018). To bee or not to bee: Investigating machine learning approaches
for beehive sound recognition. Workshop on Detection and Classification of Acoustic Scenes and
Events

[32] Online Doc for A.I. Cloud, [Online]. Available: https://cloud.google.com/ai-
platform/docs/technical-overview. [Accessed 16 April 2024]



https://doi.org/10.15837/ijccc.2024.4.6632 20

[33] Park, J., Yoo, T., Lee, S., Kim, T. (2023). Urban Noise Analysis and Emergency De-
tection System using Lightweight End-to-End Convolutional Neural Network. INTERNA-
TIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL Vol. 18(5), DOI:
10.15837/ijccc.2023.5.5814

[34] Perry, L. (2020). IoT and Edge Computing for Architects: Implementing edge and IoT systems
from sensors to clouds with communication systems, analytics and security. Packt. Packt Pub-
lishing Ltd 2020.

[35] Qandour, A., Ahmad, I., Habibi, D.; Leppard, M. (2014). Remote beehive monitoring using
acoustic signals. Australian Acoustical Society 42. 204-209.

[36] Ruck, D. W., Rogers, S. K.; Kabrisky, M. (1990). Feature selection using a multilayer perceptron.
Journal of neural network computing 2(2), 40-48. 1990.

[37] Sarton, G. (1943). The Feminine Monarchie of Charles Butler, 1609 The University of Chicago
Press Vol. 34(6), 469-472. 1943

[38] SparkFun Load Cell Amplifier - HX711, [Online]. Available:
https://www.sparkfun.com/products/13879. [Accessed 21 March 2024]

[39] Spectrogram, Edge Impulse, [Online]. Available: https://docs.edgeimpulse.com/docs/spectrogram.
[Accessed 11 March 2024]

[40] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.; Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research.
15(1), 1929-1958., ISSN 1532-4435. 2014.

[41] TensorFlow. [Online]. Available: https://www.tensorflow.org/. [Accessed 21 March 2024]

[42] TensorFlow Model Optimization Toolkit — Pruning API. Tensorflow, [Online]. Available:
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html. [Accessed
9 March 2024]

[43] Varol, E.; Yücel, B. (2019). The effects of environmental problems on honey bees in view of
sustainable life. Mellifera. Vol. 19(2), 23-32. 2019

[44] Venkatesan, R.; Li, B. (2017). Convolutional neural networks in visual computing: a concise
guide. CRC Press. ISBN 978-1-351-65032-8. 2017

[45] Vladimir K., Sarbajit M., Prakhar A. (2018). Toward Audio Beehive Monitoring: Deep Learning
vs. Standard Machine Learning in Classifying Beehive Audio Samples. APPLIED SCIENCES-
BASEL. Vol 8(9). eISSN: 2076-3417

[46] Warden, P.; Situnayake, D. (2019). Tinyml: Machine learning with tensorflow lite on arduino and
ultra-low-power microcontrollers. O’Reilly Media. ISBN: 9781492052043. 2019

[47] Woods, E. F. (1957). Means for Detecting and Indicating the Activities of Bees and Conditions
in Beehives. U.S. Patent and Trademark Office. Patent US2806082A, 10 September 1957.

[48] Yu, D., Zhan, X., Yang, L. J.; Jia, Y. (2023). Theoretical description of logical stochastic resonance
and its enhancement: Fast Fourier transform filtering method. Physical Review E. Vol. 108(1),
014205. 2023

[49] Zgank, A. (2020). Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service.
Sensors Vol. 20(1); https://doi.org/10.3390/s20010021.

[50] Zhao, T., Li, Y., Zuo, L.; Zhang, K. (2021). Machine-learning optimized method for regional
control of sound fields. Extreme Mechanics Letters. Vol. 45, 101297, 2021.



https://doi.org/10.15837/ijccc.2024.4.6632 21

[51] Zhao, Y., Deng, G., Zhang, L., Di, N., Jiang, X.; Li, Z. (2021). Based investigate of beehive sound
to detect air pollutants by machine learning. Ecological Informatics. Vol. 61, 101246, 2021.

[52] Zou, Z., Jin, Y., Nevalainen, P., Huan, Y., Heikkonen, J.; Westerlund, T. (2019). Edge
and fog computing enabled AI for IoT-an overview. Proceedings of 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS) pp. 51-56. IEEE. doi:
10.1109/AICAS.2019.8771621. 2019

Copyright ©2024 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Doinea, M.; Trandafir, I.; Toma, C..; Popa, M.; Zamfiroiu, A. (2024). IoT Embedded Smart
Monitoring System with Edge Machine Learning for Beehive Management, International Journal of
Computers Communications & Control, 19(4), 6632, 2024.

https://doi.org/10.15837/ijccc.2024.4.6632


	Introduction
	Tiny Machine Learning on Edge
	Related Studies and Motivation
	Proposed solution

	System Architecture for IoT Monitoring Solutions
	Hardware and Software components
	Model deployment on edge

	Solution Engineering for Machine Learning Decision Support
	Feature engineering
	Model engineering

	Decision Support for Beehive Management Using Convolutional Neural Networks
	Results and discussions
	Conclusions

