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Abstract

This paper introduces the GCN-Transformer model, an innovative approach that combines
Graph Convolutional Networks (GCNs) and Transformer architectures to enhance spatiotemporal
sequence prediction. Targeted at applications requiring precise analysis of complex spatial and tem-
poral data, the model was tested on two distinct datasets: PeMSD8 for traffic flow and KnowAir
for air quality monitoring. The GCN-Transformer demonstrated superior performance over tra-
ditional models such as LSTMs, standalone GCNs, and other GCN-hybrid models, evidenced by
its lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). An ablation study
confirmed the importance of each component within the model, showing that removing elements
like GCN layers, Transformer layers, attention mechanisms, or positional encoding detrimentally
impacts performance. Overall, the GCN-Transformer model offers significant theoretical and prac-
tical contributions to the field of spatiotemporal data analysis, with potential applications across
traffic management, environmental monitoring, and beyond.

Keywords: Spatiotemporal prediction; Self-attention mechanisms; Graph Convolutional Net-
works; Transformer architectures.

1 Introduction
Spatiotemporal sequence prediction is crucial for understanding and responding to various dy-

namic changes, especially in fields that significantly impact public safety and socio-economic activities
[1, 2]. For instance, in health epidemic management, it enables forecasting virus spread and opti-
mizing medical resource allocation. In environmental science, predicting air quality indicators like
PM2.5 assists governments in adjusting policies for better air quality. In urban planning, accurate
traffic flow predictions help manage congestion and enhance urban traffic efficiency. Thus, improving
spatiotemporal sequence prediction can enhance the response capabilities of individuals and society,
provide data bases for governments to formulate scientific and rational policies, and better serve the
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public interest and social stability. Accurate predictions of these key data can significantly improve
the quality and efficiency of public safety, environmental protection, and urban management [3, 3].

With the significant advancement in computational capabilities and the rapid development of deep
learning technologies, deep learning-based spatiotemporal sequence prediction has progressed swiftly
[5, 6, 7]. This progress is driven not only by more powerful hardware support, such as GPUs and
TPUs, but also by continuous innovation and optimization in deep learning algorithms, including
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and their variants, as
well as the more recent Transformer architecture. The combination of these technologies enables mod-
els to more effectively process and analyze large-scale datasets with complex temporal and spatial
correlations. For instance, deep learning models can learn periodic and trend features from histori-
cal data and consider spatial interactions and dependencies, such as similarities in environmental or
socio-economic characteristics due to geographical proximity. Moreover, the automated feature ex-
traction capability of deep learning models significantly reduces the need for preprocessing and feature
engineering in traditional models, simplifying the modeling process and improving adaptability and
flexibility. This technological development not only makes spatiotemporal sequence prediction more
precise but also greatly expands its application range across different industries, such as climate sci-
ence, financial market analysis, and intelligent transportation systems [8, 9]. Each application domain
can derive substantial benefits, ultimately promoting the optimization and progress of the entire social
and economic system.

However, despite significant advancements, there remain two major challenges in the field of deep
learning-based spatiotemporal sequence prediction. First is the challenge of capturing complex spa-
tiotemporal dependencies. Traditional prediction models often struggle to effectively handle the in-
tricate interactions in data across time and space dimensions. For example, the periodic and trend
changes in time series and the uneven distribution caused by geographical factors need precise mod-
eling to predict future states. The spatiotemporal self-attention mechanism, with its flexible weight
allocation, can adaptively learn and reinforce important dependencies in time and space, thereby en-
hancing the model’s responsiveness to dynamic changes [10, 11]. Second is the challenge of improving
computational efficiency. With the exponential growth in data volume, especially in real-time predic-
tion scenarios, traditional deep learning models often face significant computational resource demands
and latency issues. The spatiotemporal self-attention model, by optimizing computational paths and
reducing unnecessary repetitive calculations, can significantly improve computational efficiency with-
out compromising prediction accuracy. This is particularly crucial for applications requiring rapid
response, such as traffic flow control and disaster emergency response [12, 13].

To address the complexities and real-time requirements of spatiotemporal sequence prediction, we
have developed a spatiotemporal self-attention-based prediction model. This model integrates self-
attention mechanisms across both temporal and spatial dimensions, allowing the model to adaptively
learn key dependencies in the data. By utilizing multi-head attention techniques, our model can simul-
taneously process different spatiotemporal relationships, enhancing prediction accuracy. Additionally,
this structure optimizes the computational process, enabling the model to run efficiently and maintain
real-time responsiveness even with large-scale datasets. This advancement represents a significant
technological step forward in tackling the growing data challenges.

The contributions of this paper are as follows:
1) Innovative Spatiotemporal Self-Attention Model: We designed and implemented a spatiotem-

poral sequence prediction model based on the spatiotemporal self-attention mechanism. This model
effectively captures and models complex spatiotemporal dependencies by integrating self-attention
mechanisms across temporal and spatial dimensions. The use of multi-head attention allows the model
to concurrently handle different types of spatiotemporal correlations, significantly improving under-
standing and prediction accuracy of complex spatiotemporal data. This innovation ensures the model
performs exceptionally well across various practical application scenarios, enhancing both prediction
accuracy and reliability.

2) Optimization of Computational Efficiency: By incorporating the self-attention mechanism and
optimizing computational pathways, we achieved significant improvements in computational efficiency
while maintaining high prediction performance. Traditional deep learning models often face high
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computational resource consumption and poor real-time performance when processing large-scale spa-
tiotemporal data. Our optimized design enables the model to efficiently handle massive datasets and
deliver reliable predictions in real-time or near-real-time application scenarios. This makes the model
suitable for large-scale data analysis tasks requiring quick responses, such as traffic flow control and
epidemic monitoring.

3) Extensive Validation of Model Applicability: We conducted extensive experimental validation
of the model across multiple real-world application domains, including epidemic spread prediction, air
quality (e.g., PM2.5) prediction, and traffic flow prediction. The experimental results demonstrated
that the spatiotemporal self-attention-based prediction model consistently outperforms traditional
spatiotemporal sequence prediction methods in these diverse fields. This not only proves the model’s
effectiveness and accuracy but also showcases its broad applicability and practical value in various
application areas, providing robust technical support for related research and applications.

2 Related Works

2.1 Deep learning Spatio-temporal Prediction

The advent of deep learning in spatio-temporal prediction has revolutionized how complex pre-
dictive problems are addressed, particularly in domains ranging from construction to disaster man-
agement and urban planning. Fu and Zhang’s study [14] showcases the capability of deep learning
to enhance operational efficiencies in construction by predicting real-time operating parameters of
Tunnel Boring Machines (TBM). This integration of time-sensitive data with spatial information not
only optimizes construction operations but also demonstrates deep learning’s strength in facilitating
on-the-spot decision-making in highly dynamic settings.

In the realm of disaster management, Xu et al.’s SAF-Net [15] exemplifies the critical role of
accurate and timely predictions in mitigating the impacts of natural disasters like typhoons. By
significantly enhancing predictive accuracy, such frameworks potentially save lives and reduce economic
losses by enabling better preparedness and response strategies. Similarly, in traffic and environmental
management, Bhardwaj et al. [16] have introduced an adaptive model that tailors its predictions
to varying traffic conditions and environmental factors, thus promoting safer road conditions and
demonstrating deep learning’s adaptability to fluctuating scenarios.

Further applying deep learning to urban mobility, Zhao et al. [17] combine hyper-clustering with
deep learning to predict traffic and demand in bike-sharing systems. This approach not only aids in
decoding complex user behaviors but also enhances system efficiency by predicting demand patterns,
which is crucial for resource allocation and system expansion. Additionally, Modi et al. [18] con-
tribute to traffic management by employing a deep learning-based approach for multistep traffic speed
prediction, which uncovers underlying patterns essential for effective urban traffic management.

Moreover, Pan et al. [19] utilize deep meta learning to enhance the adaptability of deep learning
models to varied urban traffic prediction scenarios, thus broadening their applicability and effectiveness
across different environments. This adaptability underscores deep learning’s potential to develop
generalized models capable of adjusting to and learning from diverse data sources, setting a foundation
for future innovations in spatio-temporal prediction.

Collectively, these studies highlight the transformative impact of deep learning across various
sectors, improving not only computational efficiency and predictive accuracy but also demonstrating
the method’s versatility in addressing specific, real-world challenges. By transcending traditional
predictive models, deep learning facilitates a deeper understanding of the complex interdependencies
of time and space in predictive modeling, paving the way for significant advancements in numerous
predictive applications.

2.2 Attention Mechanism in Spatio-temporal Prediction

The utilization of attention mechanisms within spatio-temporal prediction has significantly en-
hanced the capability of models to prioritize relevant features from large datasets, leading to more
accurate and granular insights, especially in the context of traffic dynamics and activity recognition.
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This advancement is illustrated through a series of recent studies that apply varying forms of attention
mechanisms to improve the interpretability and efficiency of predictions.

Yang et al. [20] introduce STVANet, a spatio-temporal visual attention framework that employs
a large kernel attention mechanism. This model is specifically designed to enhance citywide traffic
dynamics prediction by focusing on larger spatial contexts, which allows it to capture broader traffic
patterns and improve prediction accuracy across a city’s network. This approach demonstrates the
potential of tailored attention mechanisms to significantly refine the granularity of predictions in
complex urban environments.

Similarly, Nikpour and Armanfard [21] apply a spatio-temporal hard attention learning model
for skeleton-based activity recognition. This method focuses on critical movements within sequences,
thereby improving the model’s ability to discern nuanced activities. This specificity is crucial for ap-
plications requiring fine-grained recognition capabilities, such as advanced surveillance and interactive
gaming systems.

Further enhancing the application of attention in traffic predictions, Ma et al. [22] and Chen et al.
[23] explore the use of graph attention networks. Ma et al. implement these networks to dynamically
weigh the relationships between different nodes in a traffic system, allowing for adaptive predictions
that respond to changes in traffic flow over time. Chen et al. extend this approach by incorporating
graph convolution, enhancing the model’s ability to leverage spatial dependencies effectively. These
studies underscore the importance of combining attention with graph-based models to address the
spatial complexities inherent in networked systems like urban traffic.

Shi et al.[24] and Zeng et al. [25] also emphasize the role of attention in traffic prediction. Shi et
al. use a spatial-temporal attention approach to refine the model’s focus on specific time and space
points, enhancing the accuracy of traffic forecasts. Zeng et al. [26] develop a deep spatio-temporal
neural network that incorporates interactive attention, enabling the model to adjust its focus based
on the interaction of past traffic conditions and future predictions. This interactive attention not
only improves prediction accuracy but also contributes to the model’s adaptability to varying traffic
patterns.

Collectively, these studies illustrate the robustness of attention mechanisms in enhancing spatio-
temporal predictions. By allowing models to selectively concentrate on the most informative features,
attention mechanisms not only improve the accuracy of predictions but also enhance the computational
efficiency by reducing the redundancy in data processing. This is particularly impactful in real-time
applications where rapid and accurate decision-making is crucial [27, 28, 29]. The integration of
attention mechanisms into spatio-temporal models represents a sophisticated approach to handling
the complexities of large-scale data environments, paving the way for more adaptive, efficient, and
precise predictive systems.

3 Methods

3.1 Overall Framework

The GCN-Transformer model is designed to tackle complex spatiotemporal data analysis by ef-
fectively combining GCN and the Transformer architecture. This integration allows the model to
leverage both spatial and temporal data dependencies comprehensively. Initially, the model processes
graph-structured data using GCN to extract crucial spatial features. These features include topologi-
cal relationships and interactions between nodes which are vital for understanding complex networks
like social interactions, transportation systems, or molecular structures.

Once the spatial features are extracted, they are transformed into a suitable format for time series
analysis. This is done by multiplying the output from the GCN with weight matrices, producing Query,
Key, and Value matrices necessary for the Transformer’s self-attention mechanism. This mechanism
dynamically adjusts the focus of the model by calculating the interactions across different time points
in the data, allowing it to capture long-term dependencies and subtle patterns within the time series.

Additionally, positional encoding is introduced post the self-attention layers to enhance the model’s
sensitivity to temporal order—crucial in time series data—since Transformers do not inherently process
sequence order. Positional encoding assigns a unique identifier to each position in the sequence through
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variations in sine and cosine functions, which helps in recognizing and interpreting dynamic changes
over time.

The processed data then passes through multiple layers of self-attention and feed-forward networks,
which not only refine the analysis further but also improve the predictive accuracy and generalizability
of the model across different tasks, such as traffic flow prediction or climate pattern recognition. The
final output is fine-tuned through a combination of layer normalization and attention mechanisms,
ensuring high-quality, reliable outputs. This structural approach allows the GCN-Transformer model
to handle complex spatiotemporal datasets effectively, providing robust analytical capabilities that
drive innovation in large-scale data analysis.

3.2 GCN for Spatial Feature Extracting

GCNs have emerged as a powerful tool for feature extraction from spatial data, particularly in
domains where structured data is naturally represented as graphs, such as social networks, transporta-
tion networks, and molecular structures. GCNs leverage convolution operations on graph-structured
data, enabling the model to effectively capture and learn the complex dependencies and characteristics
among nodes.

The primary advantage of GCNs lies in their ability to utilize the topological information of nodes.
Unlike traditional CNNs, which mainly handle regular grid data like images, GCNs are designed to
directly process graph data. This capability allows them to extract spatial features dependent on the
relationships between nodes with higher efficiency and accuracy. For instance, in transportation net-
works, GCNs can utilize the relationships between various nodes (such as intersections and highways)
to predict traffic flow or optimize routes. This method, by learning the connectivity and interactions
between nodes, can more accurately reflect actual traffic patterns, thus playing a crucial role in navi-
gation services or traffic management. Additionally, GCNs are extensively applied in other fields, such
as recommendation systems and bioinformatics. In these applications, GCNs analyze the interactions
and connectivity between nodes to extract key spatial features that influence system decisions or the
activity of biomolecules.

The core of GCNs involves updating the representation of nodes through convolution operations
on the graph. For each node, its new feature representation is obtained by aggregating its own features
with those of its neighboring nodes. This can be represented by the following formula:

H(l+1) = σ
(
D− 1

2 AD− 1
2 H(l)W (l)

)
(1)

where: H(l) is the feature matrix of nodes at layer l, A is the adjacency matrix of the graph, D is
the degree matrix (diagonal elements are the degrees of nodes, i.e., the number of edges connected to
the node), W (l) is the weight matrix for layer l, σ is an activation function, such as ReLU.

This hierarchical feature update method enables GCNs to effectively learn the spatial character-
istics of each node in the graph. In practice, this approach is particularly suited to tasks where the
interactions between nodes influence the prediction outcomes, such as traffic flow prediction. In such
tasks, GCNs can analyze and learn traffic patterns and dependencies among roadway nodes to enhance
prediction accuracy.

3.3 GCN-Transformer for Spatiotemporal Feature Extracting

The integration of GCN with Transformers leverages the strengths of both architectures to enhance
model performance, particularly in handling spatiotemporal data. GCNs are adept at processing
data that embodies graph structures, effectively capturing spatial relationships by aggregating and
transforming feature information from neighboring nodes. This capability is crucial for applications
where data are inherently structured in graphs, such as social networks, molecular structures, or
transportation networks.

Transformers, on the other hand, excel in sequence processing, particularly due to their self-
attention mechanism which allows the model to weigh the importance of different parts of the input
sequence, regardless of their distance. This is especially beneficial for temporal data analysis, where
understanding the long-range dependencies is vital for accurate predictions.
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The GCN-Transformer model is an advanced approach that combines GCN with the Transformer
architecture, specifically designed to effectively process and analyze spatiotemporal data. This model
merges the spatial feature extraction capabilities of GCN with the temporal processing strengths of
the Transformer, optimizing the capture of spatiotemporal features, particularly suitable for complex
data analysis tasks where both spatial and temporal dependencies are crucial.

In the GCN-Transformer model, the GCN part first processes graph-structured data to extract
spatial features. These features are then transformed into a format suitable for time series analysis.
The feature matrix of nodes H(l) is multiplied by different weight matrices to generate the Query,
Key, and Value matrices required by the Transformer:

Q = H(l)W Q (2)

K = H(l)W K (3)

V = H(l)W V (4)

these matrices W Q,W K ,W V are learnable parameters that adapt the output of the GCN to fit
into the self-attention mechanism of the Transformer. Within the self-attention layer, the model
dynamically adjusts the interactions between different time points using the following formula:

Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V (5)

where, dk is the dimension of the key vectors, and this normalization helps prevent gradient
vanishing issues that can occur when computing the dot product if the dimensions are large. Here,
dk is the dimension of the key vectors, and this normalization helps prevent gradient vanishing issues
that can occur when computing the dot product if the dimensions are large.

To enhance the model’s sensitivity to temporal information, position encoding is typically added
after the self-attention layer. This step is necessary because Transformers do not inherently process
the order of the input data. The introduction of positional encoding allows the model to recognize
patterns at different time points in the sequence:

PE(pos,2i) = sin
(
pos/100002i/dmati

)
(6)

PE(pos,2i+1) = cos
(
pos/100002i/dmoded

)
(7)

positional encoding maintains uniqueness for each position through the variation of sine and cosine
functions, enabling the model to use this information to learn and infer dynamic changes in the time
series.

By combining the positional encoding with the output of the self-attention layer, the model can
consider data across both spatial and temporal dimensions, further processed through a multi-layer
network structure, including successive self-attention and feed-forward network layers. The final out-
put layer may refine through the following method:

H(l+1) = LayerNorm
(
H(l) + Attention (Q, K, V )

)
(8)

by integrating spatial graph structures with temporal series analysis, the GCN-Transformer model
significantly enhances the analytical capabilities for complex spatiotemporal data, as demonstrated
in applications like traffic flow prediction and climate pattern recognition. The introduction of this
model not only offers a new perspective for spatiotemporal data analysis but also drives methodological
innovation in handling large-scale spatiotemporal data.
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3.4 Parameter Updates

In the GCN-Transformer model, parameter updates are implemented by optimizing the objective
function to ensure optimal performance when processing spatiotemporal data. The loss function
typically chosen for optimization is the Mean Squared Error (MSE), which is formulated as follows:

L (θ) = 1
N

∑N
i=1 (yi − ŷi)2 (9)

where L (θ) is the loss function, N represents the number of samples, yi is the actual value of
the i-th sample, ŷi is the predicted value by the model for the i-th sample, and θ denotes the model
parameters. Parameter optimization is conducted through gradient descent, where the goal is to
minimize the loss function. The parameter update formula can be expressed as:

θt+1 = θt − η∇θL (θt) (10)

where θt represents the parameters at iteration t,θt+1 are the updated parameters, η is the learning
rate, and ∇θL (θt) is the gradient of the loss function L with respect to the parameters θ at θt.

4 Experimental Results

4.1 Datasets

The GCN-Transformer model is applied to two distinct datasets to evaluate its effectiveness in
handling complex spatiotemporal data: the PeMSD8 and the KnowAir dataset.

Traffic Prediction with PeMSD8 Dataset: The PeMSD8 dataset from the Performance Measure-
ment System (PeMS) includes data from over 39,000 sensors across California’s freeway system. This
dataset, focusing on District 8 in Southern California, is critical for traffic analysis due to its coverage
of major highways and transportation nodes. It provides granular details such as vehicle counts, oc-
cupancy rates, and speeds at different times of the day, reflecting the dynamic and fluctuating nature
of traffic patterns. The main challenges in traffic prediction involve managing the vast scale and vari-
ability of data, requiring a model that can adapt to sudden changes in traffic flow and congestion. Our
GCN-Transformer model addresses these challenges by effectively capturing the spatial relationships
through the GCN layers while utilizing the Transformer’s ability to model temporal dependencies.
This synergy allows for precise real-time traffic forecasting, aiding in congestion management and
route optimization.

Air Quality Prediction with KnowAir Dataset: The KnowAir dataset is pivotal for studying air
quality, comprising data from various monitoring stations across urban and rural settings. It amal-
gamates key pollution metrics like PM2.5, PM10, NO2, and CO levels with meteorological factors
including temperature, humidity, and wind speed. The challenge in air quality prediction lies in the
integration of diverse data types and the accurate modeling of environmental impacts on pollution
levels. The GCN-Transformer model leverages its GCN component to interpret the spatial correlations
between different monitoring stations and urban features, while the Transformer part captures tem-
poral trends and fluctuations. This model’s application facilitates enhanced predictions of air quality
indices, crucial for public health advisories and environmental policy making.

Together, these datasets provide a diverse range of spatiotemporal data that allows for extensive
testing and refinement of the GCN-Transformer model. By applying the model to such varied datasets,
researchers can not only fine-tune its predictive capabilities but also enhance its adaptability and
accuracy across different applications, from traffic management in densely populated areas to air
quality control in changing urban landscapes.

4.2 Experimental Implementation

For the experimental implementation of the GCN-Transformer model, a comprehensive approach
was adopted to ensure the effectiveness and robustness of the model across different spatiotemporal
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datasets, specifically the PeMSD8 and KnowAir datasets. The experiments were structured to eval-
uate the model’s performance in predicting traffic flow and air quality, two crucial applications of
spatiotemporal data analysis.

The experiments were conducted on a computing setup equipped with high-performance GPUs
to accommodate the demanding computational requirements of the GCN-Transformer model. Each
dataset was preprocessed to align with the input requirements of the model. For the PeMSD8 dataset,
data preprocessing involved normalizing traffic volume and speed measurements, while for the KnowAir
dataset, preprocessing involved normalizing the air quality indices and meteorological measurements
to a common scale to facilitate uniform processing.

The GCN-Transformer model was configured with four layers in total to effectively capture both
the spatial and temporal dependencies inherent in the datasets. Specifically, the GCN component
comprised three convolutional layers designed to process the graph-based spatial data effectively. Each
convolutional layer was finely tuned with a feature extraction kernel size of 64, a stride of 1, and a
dilation rate of 2, to optimize the extraction of features from nodes and their topological relationships.
The Transformer component utilized a single layer with an attention mechanism to handle temporal
sequence modeling, enhancing the overall predictive accuracy of the model.

For the temporal analysis using the Transformer, multiple self-attention layers were employed.
These layers were designed to focus on different aspects of the temporal data, allowing the model to
capture both short-term fluctuations and long-term trends in traffic and air quality data. Positional
encodings were added to the model to maintain the temporal sequence of the data inputs, crucial for
accurate time series forecasting.

The model was trained using a carefully optimized batch size of 128, striking a balance between
computational efficiency and model performance. We utilized the Adam optimizer for backpropaga-
tion, renowned for its effectiveness in handling sparse gradients on noisy problems. The learning rate
was set at 0.001, a choice made to mitigate the risk of overfitting while ensuring sufficient convergence
of the model over 100 training epochs. To further enhance the training process, we applied a dropout
rate of 0.5 and L2 regularization with a lambda of 0.01 to promote model generalization.

To assess the model’s predictive accuracy and robustness, we employed several evaluation metrics.
The Mean Squared Error (MSE) was used as the primary metric for continuous data prediction
accuracy. We also included the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) to provide a more nuanced view of the model’s performance across different aspects of the
data. The evaluation process was complemented by extensive validation techniques, including 5-fold
cross-validation conducted in five separate experimental runs. This rigorous validation framework
not only confirmed the model’s reliability but also safeguarded against overfitting, ensuring that our
findings are both robust and replicable.

4.3 Comparisons with Benchmarks

In evaluating the GCN-Transformer model, several benchmark models were used to establish com-
parative performance metrics across two distinct spatiotemporal datasets: the PeMSD8 for traffic flow
prediction and the KnowAir dataset for air quality monitoring. Each benchmark model represents a
different approach to handling either spatial or temporal data, or a combination of both, providing a
comprehensive view of current capabilities and limitations in spatiotemporal data analysis.

Benchmarks: 1) LSTM (Long Short-Term Memory): LSTM networks are a type of recurrent neu-
ral network (RNN) particularly well-suited for sequence prediction problems. They are capable of
learning long-term dependencies in time series data due to their gated architecture, which addresses
the vanishing gradient problem typical of standard RNNs. 2) GCN (Graph Convolutional Network):
GCNs leverage the properties of graph theory to process data represented in graph structures. By
performing convolution operations directly on graphs, GCNs are adept at capturing spatial relation-
ships and features from data that naturally fits into a network format, such as road networks or social
connections. 3) GCN-LSTM: This hybrid model combines the spatial analysis power of GCNs with
the temporal modeling capabilities of LSTMs. By integrating these two approaches, the GCN-LSTM
can effectively handle data that varies over time while also being influenced by the underlying spatial
topology. 4) GCN-GRU (Graph Convolutional Network - Gated Recurrent Unit): Similar to the GCN-
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LSTM, this model replaces the LSTM component with a GRU. GRUs simplify the LSTM architecture
and often provide similar or better performance on certain types of data due to their more efficient
gating mechanisms in processing sequences. 5) Attention GCN-LSTM: Enhancing the GCN-LSTM
model, the Attention GCN-LSTM incorporates attention mechanisms that allow the model to focus
on the most relevant parts of the input data for making predictions. This is particularly useful in
complex scenarios where not all data points contribute equally to the outcome, such as fluctuating
traffic patterns or variable air quality conditions.

As shown in Table 1, the comparisons begin with the PeMSD8 dataset, where various models
were evaluated based on their RMSE and MAE metrics. The traditional LSTM model, serving as a
baseline, showed RMSE and MAE values of 0.450 and 0.300 respectively. This was indicative of its
modest capability in handling the spatial complexities inherent in traffic data. The introduction of
GCN significantly improved performance, reducing RMSE to 0.430 and MAE to 0.280, demonstrating
the benefits of incorporating spatial information directly through graph-based methods.

Further enhancements were observed with hybrid models. The GCN-LSTM model, which combines
the spatial analytic power of GCN with the temporal processing strength of LSTM, achieved an RMSE
of 0.410 and an MAE of 0.270. The GCN-GRU model, utilizing Gated Recurrent Units for potentially
more efficient temporal processing, further lowered the RMSE to 0.390 and MAE to 0.260. The
Attention GCN-LSTM model introduced attention mechanisms, achieving even better results with an
RMSE of 0.350 and an MAE of 0.230, underscoring the advantage of focusing selectively on the most
impactful features.

The proposed GCN-Transformer model outperformed all these configurations, delivering the lowest
RMSE and MAE at 0.275 and 0.121, respectively. This superior performance is attributed to the
model’s effective integration of GCN for detailed spatial analysis and the Transformer architecture for
capturing complex temporal dependencies, providing a robust framework for traffic prediction.

Table 1: Comparison with benchmarks (PeMSD8)
Model RMSE MAE
LSTM 0.450 0.300
GCN 0.430 0.280

GCN-LSTM 0.410 0.270
GCN-GRU 0.390 0.260

Attention GCN-LSTM 0.350 0.230
Proposed method 0.275 0.121

For the KnowAir dataset (Table 2), focused on air quality monitoring, similar patterns of perfor-
mance improvement were observed. The baseline LSTM model recorded an RMSE of 0.088 and an
MAE of 0.045. With the integration of GCN, these metrics improved to 0.075 and 0.038 respectively,
showcasing the benefits of graph-based spatial feature extraction in environmental data analysis.

Hybrid models again demonstrated their efficacy; the GCN-LSTM model brought the RMSE down
to 0.070 and the MAE to 0.036. The GCN-GRU model further refined these figures to 0.065 and 0.033,
benefiting from the GRU’s efficient temporal processing. The Attention GCN-LSTM model, leveraging
advanced attention mechanisms, achieved an RMSE of 0.060 and an MAE of 0.030, highlighting its
capacity to dynamically prioritize significant data points in both time and space.

The proposed method, incorporating the GCN-Transformer, recorded the best performance with
an RMSE of 0.052 and an MAE of 0.026. This outcome underscores the model’s exceptional ability
to synthesize and analyze complex spatiotemporal relationships effectively, making it a highly capable
tool for predicting air quality, which is influenced by a multitude of environmental and temporal
factors.

These comparisons clearly illustrate the effectiveness of the GCN-Transformer model in handling
diverse spatiotemporal datasets, significantly outperforming traditional and hybrid models in both
traffic flow and air quality predictions. The integration of GCN with Transformer technology not
only enhances the model’s accuracy but also its applicability to real-world scenarios where precise and
reliable predictions are crucial for decision-making and strategic planning. Our comparative studies
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affirm that the GCN-Transformer model excels in processing spatiotemporal datasets, especially in
traffic flow and air quality predictions, outshining traditional and hybrid models. The GCN compo-
nent adeptly captures spatial dependencies using node features and their topologies, offering more
precise predictions. Meanwhile, the Transformer architecture enhances temporal analysis through its
self-attention mechanism, which allows independent and simultaneous consideration of different points
in a sequence. This dual capability not only improves prediction accuracy but also enhances computa-
tional efficiency and scalability. Consequently, the GCN-Transformer model is not only theoretically
innovative but also highly applicable to real-world scenarios, aiding in decision-making and strategic
planning where precise and reliable predictions are vital.

Table 2: Comparison with benchmarks (KnowAir)
Model RMSE MAE
LSTM 0.088 0.045
GCN 0.075 0.038
GCN-LSTM 0.070 0.036
GCN-GRU 0.065 0.033
Attention GCN-LSTM 0.060 0.030
Proposed method 0.052 0.026

4.4 Ablation Study

An ablation study is a crucial experimental procedure in machine learning to understand the
contribution of individual components or configurations of a model to its overall performance. For the
GCN-Transformer model, conducting an ablation study involves systematically removing or modifying
certain features or parts of the model and observing the impact on performance metrics. This helps
in identifying the most influential factors and justifying the model’s complexity.

The ablation study for the GCN-Transformer model on both the PeMSD8 and KnowAir datasets
would focus on several key aspects:

Graph Convolutional Network (GCN) Layers: Evaluating the impact of the number of GCN
layers on the model’s ability to capture spatial features. Transformer Layers: Assessing how the
number and configuration of Transformer layers affect the model’s temporal analysis capabilities.
Attention Mechanisms: Analyzing the effect of including or excluding attention mechanisms within
the Transformer layers. Positional Encoding: Determining the contribution of positional encoding to
handling sequence data effectively. Each component will be independently modified or removed in the
model’s pipeline, and the changes in performance will be documented.

The ablation study results for both the PeMSD8 and KnowAir datasets provide significant insights
into the individual contributions of various components within the GCN-Transformer model to its
overall predictive performance. This analysis helps in understanding the importance of each module
and offers a justification for the model’s architectural complexity.

Starting with the PeMSD8 dataset (Table 3), the full model achieves an RMSE of 0.275 and an
MAE of 0.121, setting a benchmark for comparison. The removal of GCN layers increases the RMSE
to 0.310 and MAE to 0.140, indicating a clear degradation in performance. This suggests that the
GCN layers play a crucial role in capturing spatial relationships and features from the traffic flow
data, which are essential for accurate predictions. Similarly, eliminating Transformer layers results in
the most significant performance drop to an RMSE of 0.340 and an MAE of 0.150. This underscores
the Transformer layers’ critical role in analyzing temporal dynamics and sequences effectively.

Removing attention mechanisms results in a more modest increase in RMSE to 0.290 and MAE to
0.130. Although the impact is less severe than removing entire layers, it highlights the importance of
attention mechanisms in focusing the model on relevant features over time, enhancing the accuracy of
predictions. The exclusion of positional encoding leads to a slight increase in RMSE to 0.285 and MAE
to 0.125, demonstrating its usefulness in maintaining the sequence order for time-sensitive predictions.

The KnowAir dataset shows similar trends(Table 4), where the full model’s performance with an
RMSE of 0.052 and an MAE of 0.026 serves as the baseline. Removing GCN layers leads to an RMSE



https://doi.org/10.15837/ijccc.2024.6.6771 11

of 0.075 and an MAE of 0.038, reflecting the significance of spatial feature extraction in air quality
monitoring. The exclusion of Transformer layers has the most detrimental effect, raising the RMSE to
0.080 and MAE to 0.040, thus confirming their pivotal role in temporal data processing. The absence
of attention mechanisms and positional encoding results in RMSEs of 0.060 and 0.055 and MAEs of
0.030 and 0.028, respectively, showing that while these features enhance model performance, their
impact is slightly less critical than the core GCN and Transformer structures.

Overall, the ablation study effectively demonstrates that each component of the GCN-Transformer
model—GCN layers, Transformer layers, attention mechanisms, and positional encoding—contributes
meaningfully to the model’s performance. The most significant drops in performance from removing
the GCN and Transformer layers indicate their indispensable roles in handling spatial and temporal
complexities, respectively. This detailed analysis validates the model’s design and provides clear
pathways for further refinement to enhance its predictive capabilities even more.

Table 3: Ablation Study Results for PeMSD8 Dataset
Model RMSE MAE
Full Model 0.275 0.121
Without GCN Layers 0.310 0.140
Without Transformer Layers 0.340 0.150
Without Attention Mechanisms 0.290 0.130
Without Positional Encoding 0.285 0.125
Full Model 0.275 0.121

Table 4: Ablation Study Results for KnowAir Dataset
Model RMSE MAE
Full Model 0.052 0.026
Without GCN Layers 0.075 0.038
Without Transformer Layers 0.080 0.040
Without Attention Mechanisms 0.060 0.030
Without Positional Encoding 0.055 0.028
Full Model 0.052 0.026

5 Theoretical and Practical Implications
The theoretical and practical implications of the GCN-Transformer model are substantial, ex-

tending across various domains where accurate and efficient spatiotemporal data analysis is crucial.
Theoretically, this model contributes to a deeper understanding of how graph-based neural networks
can be effectively integrated with sequence processing architectures like Transformers to manage the
complexities of data that exhibits both spatial and temporal dynamics. This integration not only lever-
ages the strengths of each approach—graph convolution’s capability to extract spatial features and
Transformers’ ability to handle long sequences with dependencies—but also creates a robust framework
for predictive modeling that can be generalized across different types of data and applications.

Practically, the implications are even more profound. For instance, in traffic management, the
ability of the GCN-Transformer model to predict traffic flow accurately can lead to more effective
traffic control strategies, reducing congestion and improving road safety. This model can help city
planners and traffic management systems to dynamically adjust signals and routes in real-time based
on the predicted traffic conditions. In environmental monitoring, particularly air quality prediction,
the model’s application can facilitate timely warnings about pollution levels, helping to mitigate health
risks associated with poor air quality. Public health authorities can use these predictions to advise
residents on precautionary measures and to regulate industrial activities that may contribute to air
pollution spikes.
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Furthermore, the model’s flexibility and scalability make it applicable to other complex systems,
such as energy consumption forecasting in smart grids, where both spatial factors (like the distribution
of energy sources and demand centers) and temporal factors (such as usage patterns over time) play
critical roles. The GCN-Transformer model can analyze these patterns to optimize energy distribution
and prevent overloads.

In academic and industrial research, the insights provided by this model into the interactions
between spatial and temporal elements in large datasets can guide the development of more nuanced
data processing tools and algorithms. It encourages a more integrated approach to problem-solving,
where the interconnectedness of different data types is acknowledged and leveraged for better decision-
making.

The deployment of the GCN-Transformer model in real-world scenarios such as traffic management
and public health monitoring brings with it significant ethical and social considerations. Primarily,
the issues of public safety and privacy protection stand out as critical areas of concern.

Public Safety: The application of our model in fields like traffic flow prediction and air quality
monitoring has the potential to significantly enhance public safety. By providing accurate and timely
predictions, the model can help in preempting traffic congestion and reducing accident rates. In
air quality management, it can forecast hazardous pollution levels, enabling timely warnings to the
public. However, reliance on automated predictions for critical safety decisions could also pose risks,
particularly if predictions fail or data errors lead to incorrect assessments. Ensuring the reliability
and accuracy of model outputs is therefore paramount.

Privacy Protections: While using the model for public health applications, such as predicting
disease spread, it is crucial to handle sensitive personal data responsibly. The integration of data
from various health databases into the model must comply with data protection regulations such as
GDPR in Europe or HIPAA in the United States. Anonymization of data and secure data handling
practices must be established to prevent any possibility of data breaches that could expose personal
health information.

Bias and Fairness: Another significant concern is ensuring that the model does not perpetuate
or amplify biases that may be present in the training data. This is especially important in public
health applications, where biased data could lead to unequal healthcare interventions across different
demographics. Continuous monitoring and updating of the model with diverse data sets can help
mitigate this issue.

Transparency and Accountability: There needs to be a clear understanding of how the model
makes its predictions, especially when these predictions affect public health and safety. Transparency
in how the model processes data and makes decisions is crucial for building trust among stakeholders
and the general public. Additionally, there should be accountability mechanisms in place to address
any failures or negative outcomes resulting from the model’s predictions.

6 Conclusions
In this paper, we introduced the GCN-Transformer model, a novel approach that synergistically

combines Graph Convolutional Networks (GCNs) with the Transformer architecture to tackle the
challenges of spatiotemporal sequence prediction. This integration leverages the spatial processing
capabilities of GCNs and the advanced temporal analysis strengths of the Transformer, creating a
powerful tool for analyzing data that exhibits complex spatial and temporal dynamics.

The efficacy of the GCN-Transformer model was rigorously tested across two diverse datasets:
PeMSD8, which focuses on traffic flow in California’s freeway systems, and KnowAir, which deals
with air quality monitoring across various urban and rural settings. The model demonstrated superior
performance compared to benchmarks such as traditional LSTM, GCN alone, and other hybrid models
like GCN-LSTM and GCN-GRU. For instance, in the PeMSD8 dataset, the GCN-Transformer sig-
nificantly outperformed all models with the lowest RMSE and MAE scores, indicating its robustness
in traffic prediction scenarios. Similarly, with the KnowAir dataset, the model consistently showed
improved accuracy in predicting air quality indices, outstripping standard models and confirming its
utility in environmental monitoring. An ablation study highlighted the importance of each component
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of the model. Removing elements such as GCN layers, Transformer layers, attention mechanisms, or
positional encoding adversely affected the model’s performance, underscoring their collective contribu-
tion to the model’s success. These results provide a detailed understanding of the model’s architecture,
validating the integration of these components for optimal performance in spatiotemporal prediction
tasks.

Despite its robust capabilities, our GCN-Transformer model does have limitations that should be
addressed in future research to enhance its practicality and efficacy. One significant limitation is the
model’s high computational demand when processing large-scale spatiotemporal data, which can be
particularly challenging in resource-limited environments. Moreover, while the model adeptly handles
complex spatial-temporal interactions, it can sometimes struggle with non-linear and non-stationary
data, typical in dynamic real-world scenarios.

To mitigate these issues, future developments could aim at optimizing the model’s architecture to
lessen computational loads without compromising its performance. This could involve applying model
pruning techniques to streamline the network or experimenting with more computationally efficient
versions of Transformers. Additionally, integrating more sophisticated machine learning approaches
like reinforcement learning or unsupervised learning might better equip the model to adapt and predict
non-stationary data patterns effectively.

Another valuable direction for future work is enhancing model interpretability. Making the model’s
decision-making processes more transparent is essential, especially for applications in critical areas
such as public health and urban planning, where stakeholders require clear justifications for predictive
outputs. Techniques such as feature importance analysis and model visualization could be explored
to provide deeper insights into the workings of the model, thereby increasing trust and facilitating
broader adoption in practice. These improvements and explorations will not only address the cur-
rent limitations but also broaden the model’s applicability and utility in solving complex, real-world
problems.
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