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Abstract
Therapists play a crucial role in a patient’s timely and accurate diagnosis of blood vessels within

the skull or brain tissue rupture, which is essential for achieving the best outcomes. This paper dis-
cusses the efficacy of computed tomography imaging in the recognition and classification of different
intracranial brain hemorrhage subtypes. We present a novel approach using the concept of fuzzy
deep learning with ResNet50 for computed tomography image analysis, which has improved the
accuracy of classification. This approach has efficiently identified and classified the subtypes of in-
tracranial brain hemorrhage, which include subdural, epidural, intraventricular, intraparenchymal,
and subarachnoid hemorrhage. The fuzzy deep learning system enhances the degree of fuzzy logic in
the classification process within the cascading model and improves the interpretability of the classi-
fier. The results show that near-perfect accuracy is achieved when the cascading model is utilized.
Additionally, the typical computed tomography appearance of each intracranial brain hemorrhage
subtype shows how our model identified unique diagnostic features different from those of previous
attribute-based models. This fusion of computed tomography scanning with state-of-the-art deep
learning illustrates the future of artificial intelligence recommender systems in successfully diagnos-
ing and/or treating strokes. Our study emphasizes the important role that computed tomography
imaging plays when combined with deep fuzzy learning techniques in the management of stroke
diseases.

Keywords: Intracranial Brain Hemorrhage’s Identification, Fuzzy Deep Learning, Classifica-
tion, CT images, Artificial Intelligence.
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1 Introduction
Information used for the analysis of deaths in the year 2019 highlighted intracerebral hemorrhagic

stroke as having killed more people than subarachnoid hemorrhagic stroke. Collectively, patients who
experienced hemorrhagic strokes died in excess of three million in that year. This data reveals the
global mortality from hemorrhagic strokes in the year 2019, as shown in Figure 1 [1]. Intracranial

Figure 1: Number of deaths due to hemorrhagic stroke worldwide in 2019, by gender.

hemorrhage (ICH) is a devastating pathologic process with a high case-fatality rate. This is dangerous
in a clinical setting due to the high probability of suffering from another blow on the head, which may
result in paralysis or death in the absence of appropriate medical attention. ICH is categorized into
five subtypes based on its location in the brain: These may be classified as intraventricular (IVH),
intraparenchymal (IPH), subarachnoid (SAH), epidural (EDH), and subdural (SDH). Particularly, it
may be classified as intracerebral hemorrhage when the bleeding occurs within the brain parenchyma
itself [2].

One of the most popular diagnostics in the evaluation of traumatic brain injury (TBI) patients
at the initial stage of the disease is the computed tomography (CT) scan, which helps diagnose ICH
[3]. Its widespread utilization and the possibility of getting images quickly set it as the preferred
technique in the primary ICH assessment instead of MRI. A CT scan produces a set of images using
X-ray beams. Brain tissues are differentiated based on the extent of their penetration by X-ray
beams, measured in Hounsfield units (HU). These scans appear on the monitor through a windowing
process that maps HU values into eight greyscales within the range [0, 255] using particular window
levels and widths. Modulating those variables enables features in gray-scaled images of the brain
tissues to be enhanced, such as the brain window, the stroke window, and the bone window [4].
ICH regions are seen in CT images applied to the brain window and have an increased density and an
inaccurate organization pattern. Professional radiologists must then assess these images to confirm the
presence, type, and location of the ICH. However, this diagnostic process may be lengthy and could
be imprecise, especially in cases where the center is not equipped with fully qualified subspecialty
neuroradiologists. Figure 2 in [5] shows the types of intracranial hemorrhages, each marked by red
arrows. Intraparenchymal hemorrhage shows bleeding inside the brain tissue, while intraventricular
hemorrhage highlights bleeding within the brain’s ventricular system. Subarachnoid hemorrhage is
depicted between the arachnoid and pia mater, and subdural hemorrhage occurs between the dura
mater and the arachnoid, forming a crescent shape. Finally, epidural hemorrhage shows bleeding
between the dura mater and the skull. These images emphasize the distinct locations and patterns
of bleeding for accurate diagnosis using CT scans. Previous studies have attempted to compare the
different methods that have been suggested to enhance the diagnostic effectiveness of ICH classification
according to the imaging technique applied. The more traditional approaches of machine learning, as
well as computational methods for feature extraction, have also proven their feasibility in the given
context; yet, that has also brought out the drawback: these are designed in a strictly hand-made way,
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Figure 2: Types of hemorrhages.

and, overall, they cannot encompass all the functional characteristics that could be present in the
imaging data. A more advanced model based on deep learning has turned out to be superior in image
classification analysis due to its capacity to train its hierarchy from the raw data level. However,
these models often suffer from the issues of black box nature and are not very well interpretable, and
uncertainty is not directly taken into consideration in the analysis.

Thus, analyzing the current state of the art and based on the works already discussed, it can be
stated that incorporating advanced learning concepts with neural networks and including uncertainty
and impreciseness in medical image data using fuzzy systems is a topic that has not been adequately
addressed yet. Ensuring that deep learning models implement fuzzy logic can improve their inter-
pretability and, in turn, alleviate the amount of uncertainty that may come alongside classification as
a result of the instability of the underlying data used in building deep neural networks. Therefore,
we propose a deep learning model based on fuzzy rules in ICH classification, fixing ResNet50 as the
first classification model to analyze CT images, which could allow for increasing the effectiveness of
the classification and the interpretability of the results. The presented methodology prepares a fea-
ture recognition deep learning model based on a large number of input CT images and gives different
subtypes of ICH a discriminative feature. By introducing mechanized underdetermination into the
mixture of deep learning procedures for the analysis of image data, we attempt to reduce the effects
of fuzziness and variation.

Our contribution to the field is threefold: The following is a discussion of the proposed approach:
First, the proposed method is a blend of fuzzy deep learning to define or enhance the feeling and sense
of deep learning and fuzzy logic in medical image classification. Second, we prove how our approach
explores the major types of ICH by reaching 100% accuracy. Third, we delineate the conventional,
paramount CT manifestations for each of the ICH subtypes and depict how these affect our diagnostic
model. In this regard, it is crucial to note that our study highlighted the possibility of using fuzzy deep
learning with CT scans as a possible way to revolutionize the paradigm for diagnosing and managing
stroke, especially the ICH, to decrease mortality and morbidity rates.

This research is structured as follows: A literature review is presented in Section 2. In Section 3,
the methodology and materials of the proposed fuzzy deep learning model are described. The proposed
model implementation and its evaluation are presented in Section 4. Section 5 discusses the results.
Section 6 shows the conclusion.

2 Related Work
Several conventional and state-of-the-art approaches, ranging from machine learning methods to

deep learning models, have been discussed in various studies. Yuh et al. established a threshold-based
algorithm that might help in the identification of ICH in the context of traditional machine-learning
approaches. Another approach to ICH sub-classification classified sub-types of ICH according to
the location of bleeds, their shape, and their size [6]. A post-processor was incorporated to pass
a final threshold value for detecting TBI through retrospective data of 33 CT scans, and then the
entire system was tested on 210 CT scans of people with suspected TBI. The sensitivity of their
algorithm was 98% and the specificity was 59% for ICH, while moderate accuracy was observed
with the differentiation of ICH subcategories. Li et al., in another study, proposed two techniques for
partitioning the subarachnoid hemorrhage (SAH) space, from which two methods for SAH hemorrhage
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detection were developed [7, 8]. The first one used elastic registration and a SAH space atlas, while
the second used distance transform features with a Bayesian decision method to define the vessel
boundaries. To further segment different areas of SAH space, the results from the space separation
work revealed the following features: mean gray value variance, entropy, and energy values, which were
extracted and subjected to the training of a support vector machine classifier to identify fresh SAH
hemorrhage. It is therefore imperative that such features be incorporated into the algorithm that was
tested on 60 CT scans, out of which only 30 were in the SAH hemorrhage category, and on 69 CT scans,
out of which only 30 had SAH hemorrhage. The Bayesian decision method was identified to have had
the highest performance as it postulated 100% sensitivity, 92% specificity, and 91% overall accuracy
in testing [8]. Regarding deep learning approaches, all the methods were derived from CNNs and their
derivatives. Chilamkurthy et al. educated four algorithms for differentiating little ICH subtypes and
for detecting calvarial fractures, midline shifts, and the influences of mass impacts [9]. Both these
algorithms were tested on a large number of patient images totaling 290,000, as well as a validation
set of 21,000 patient images. For testing, two datasets were used; one of them contained 491 scans
was designed as CQ500, and was publicly available online. The training and validation scans were
labeled using clinical radiology reports as the ground truth; all scans were further preprocessed using
natural language processing. Scans of ICH cases were independently reviewed by three radiologists,
each of whom issued a single vote on each of the subtypes of ICH. The deep-learned engine involves
the development of independent models of detection for each of the four types. ResNet18 was used to
predict clouds with five fully connected layers in parallel for cloud outputs. The outputs of each slice
were then taken and passed through a random forest algorithm, which aimed at showing the scan-level
confidence in the ICH presence. Overall, the accumulated AUC of the ICH sub-type classification was
found to be moderate with an average AUC of 0.93. The average sensitivity was 92%, although for
specificity, at HS operation, it was only 70% that of radiologists and varied widely depending on the
ICH subtype. Specificity, in this case, also varied between 68% for SDH detection. Electrocardiogram
(ECG) signals as ICH markers were explored by Grewal et al. [10] where they employed a 40-layer
convolutional neural network (CNN) called DenseNet, which incorporates a bidirectional LSTM layer.
In addition, they also added three additional tasks with every dense convolution block to estimate the
segmentation of the ICH regions into binary forms. Each of these auxiliary tasks includes a convolution
layer followed by a deconvolution layer in order to resize the feature maps to the image resolution.
The LSTM layer was added to consider the sequential characteristics of the CT image slices of each
subject. Incorporating their workflow, the authors trained their model on 185 CT scans, validated
the model with 67 CT scans, and tested the model with 77 CT scans. In addition to that, to split
the number of scans between the two classes equally, data augmentation using rotation and horizontal
flip was applied to the training data. If the model failed to correctly label a particular segment, these
results were then analyzed after a comparison was made between the results and the annotations that
were generated independently by three radiologists for each CT slice. The performance of the proposed
approach was rather high, with a specificity of 81%, recall of 88%, precision of 81% and F1-measure of
84%. Of which, the model outperforms most significantly, even attaining a higher F1-score than two
of the three participants, radiologists. In addition, the outcomes highlighted the usefulness of applying
attention layers, which increased the receptive field and increased the model score when carrying out
gallery searches. In [11], the author developed an ensemble of three unique CNN models for ICH
detection. These models were based on the Alexand and GoogleNet frameworks and then expanded
to 3D formats, which contained all the slices of every computed tomography scan. For instance, they
introduced a more simplistic design, regarded as fewer layers and specifying fewer filters to decrease
the parameter count. A great attribute of their approach was that they used training, validation, and
testing in 40,000 different CT scans, with 34,000 scans over the training area, including 26,000 normal
scans. This idea, despite not mentioning how exactly the CT scans were labeled, can be inferred from
the fact that positive slices were oversampled and augmented to collect a balanced training data set.
This included about 2000 scans for validation purposes and 4000 scans for testing. The combined CNN
models yielded an AUC of 87%, with corresponding precision at 80% and recall at 77% establishing
an F1 score of 78%. Arbabshirani et al. [12] used four 3D CNN models for their study, and each
model taken as input has a shape of 24x224x224. In this study, the efficacy of this model was tested
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using 9,499 retrospective and 347 prospective CT scans. For instance, the performance measurement,
specifically, the AUC, which stands for Area Under Curve, is noteworthy. In the retrospective study,
846 was achieved, while overall the average sensitivity was found to be 71.5%, and specificity was
83.5% for the study. In a recent study, Lee et al. used transfer learning on an ensemble of four
typical CNN models to classify ICH subtypes and bleeding points [13]. These models were VGG-16,
ResNet-50, INCEPTION-V3, and INCEPTION-RESNET-V2. To exhibit the spatial dependencies
between adjacent slices, there was enhancement of slice interpolation. The presented ensemble model
described was trained and validated on the data set of 904 CT scan images and later tested on the
separate retain data set of 200 scanned CT images and another data set containing 237 prospectively
scanned CT images. The ICH detection algorithm itself has passed testing with a mean testing
AUC of 0.98 with sensitivity and specificity of 95% for the same study. However, the sensitivity for
classifying ICH subtypes was 78.3% sensitivity and 92.9% specificity. Specifically, as far as the results
are concerned, the sensitivity was revealed to be 58.3% for EDH slices in the retrospective test set and
68.8%. IPH slices in the prospective test set, researchers also found localization accuracy averaged at
approximately 78.1%, testing on the attention maps overall between the model segmentation and the
bleeding points as defined by radiologists.

In [14], the authors devised a novel convolutional neural network (CNN) algorithm named OzNet
hybrid. Despite OzNet’s commendable classification performance, we augmented it with Neighbor-
hood Component Analysis (NCA) and multiple classifiers, including artificial neural networks (ANN),
Adaboost, bagging, decision trees, K-nearest neighbors (K-NN), linear discriminant analysis (LDA),
naïve Bayes, and support vector machines (SVM). Furthermore, OzNet was employed for feature ex-
traction, extracting 4096 features from the fully connected layer, which were subsequently reduced
by NCA to retain significant and informative features with minimal loss. Subsequently, these classi-
fiers were utilized to classify these significant features. Our experimental findings demonstrate that
OzNet-NCA-ANN serves as an outstanding classifier model, achieving 100% accuracy when applied
to Dataset 2, comprising brain hemorrhage CT images. However, it’s essential to acknowledge certain
limitations of the proposed hybrid algorithm. Firstly, the datasets are constrained by a limited num-
ber of CT images and lack representation of each hemorrhage type. Moreover, while CNN algorithms
may yield more efficient results with MRI images, the determination of significant features with a
tolerance value on the feature graph currently relies on a trial-and-error approach, potentially leading
to erroneous decisions. It’s imperative to refine the determination of the tolerance value to enhance
the algorithm’s robustness [14].

3 Materials and methods

3.1 Image Processing

To incorporate the CT images into the deep learning model that was to be used in the diagnosis of
this cancer, preprocessing techniques were employed to improve the CT image quality. Preprocessing
was the initial operation performed on the images; the first operation included scaling the pixel
intensities of the images to a small range of similar values. It also assists in eliminating other sources
of discrepancies, such as variations in CT scan settings and the anatomical characteristics of the
patient. Finally, augmentation was achieved by applying random rotations, translations, and flips to
the images that were added to the dataset, which also enhanced the model’s ability to handle certain
degrees of variation and overfitting [15].

Furthermore, it was important to scale down all the images analyzed to 224x224 pixels to fit
the input size for the ResNet50 model. This step served as a measure to ensure that the required
images could be taken and fed directly into the network beyond any further scaling. In addition, the
contrast of the images and the removal of noise from the images were other processes undertaken to
get enhanced images. In sum, these pre-processing steps made it possible to achieve better quality
and standardization of the input data, which would help improve the training of the deep learning
model and its results.
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3.2 Fuzzy Systems

Fuzzy systems are one of the kinds of computational models that take into consideration the
information that is defined by vagueness, uncertainty, or ambiguity and attempt to emulate cognitive
processes. Derived from the theory of fuzzy sets advanced by Lotfi Zadeh in 1965, they employ the so-
called ‘fuzzy logic’ to simulate such systems for which the binary method of modeling is not effective.
As opposed to classical logic„ which tends to work on 0 or 1 propositions, fuzzy logic works with fuzzy
propositions where an object can be a member of a set to a certain extent. This is especially beneficial
for use cases where it is either challenging or unbeneficial to be extremely accurate. For example, fuzzy
logic controllers are adopted in control systems of home appliances such as washing machines and air
conditioners to flexibly and effectively solve various conditions. They comprehend inputs from the users
and the sensors and make outputs that can be described as semisupervised, improving on performance
and usability. These are also used in artificial intelligence, robotics, and data classification since they
are applied in the management and processing of data that contain certain levels of uncertainty. Due
to the incorporation of human-like reasoning, they solve the distancing between realistic situations
and problems, as well as provide efficient solutions in uncertain and constantly changing situations.
Thus, the nature of the fuzzy systems and their ability to be applied on various scales makes this
tool one of the most relevant tools in modern technologies and meets the human-oriented approach in
many solved problems [16].

For any crisp set represented in the input space, the degree of membership, or Mozzi membership
gradient, is the most basic principle in the appliance of fuzzy logic. This value defines the membership
of the input to the particular fuzzy set. Some of the frequently used membership functions are
triangular, trapezoidal, and Gaussian functions.

The Gaussian membership function is defined by two parameters, the mean µ and the standard
deviation σ:

µA(x) = exp
(

−(x − µ)2

2σ2

)
the mean µ is the center of the Gaussian curve, and the standard deviation σ controls the width of
the curve.

3.3 Proposed Fuzzy Deep Learning

Based on the successful experience of using deep learning in classifying images, ResNet50 was
chosen as the pre-set architecture for CNN since it outperforms other pre-set models. It consists
of 50 layers, such as convolutional layers, dropout, batch normalization layers, and ReLU activation
functions, that are grouped to create a deep network for extracting the features. One of the main
features of ResNet50 is residual blocks, which inform about the vanishing gradient problem and help
train networks up to tens of layers in depth without losing performance.

To perform this study, a pre-trained ResNet50 was used, which, before the beginning of the study,
was pre-trained on the ImageNet dataset. To do this, transfer learning was employed, whereby pre-
learned features were trained on our ICH dataset to refine the pre-learned features. This approach
made it possible for the model to fine-tune the general features captured in a large and diverse database
and apply the result directly to the classification of ICHs, which helped to reduce the amount of time
and mistakes needed to classify various subtypes of ICHs. Autoencoder-based deep learning focuses
on learning compressed representations of the input data, while the interpretability of the fuzzy logic
makes it easy to understand the final results even for a complex model. The features that the ResNet50
extracted were then passed through the fuzzy logic layer, which makes use of fuzzy logic intending to
increase classification precision. With this integration, it is easier to handle uncertainties and even
ambiguous cases in the task of medical image classification while enhancing the model’s strengths in
making more accurate predictions.

Figure 3 illustrates the architecture of a fuzzy deep learning model for multi-class classification
tasks, specifically focusing on medical image analysis. It begins with an input layer, which accepts
input images with 3 color channels but can vary in height and width. The next layer is a functional
model, likely a pre-trained convolutional neural network such as ResNet50, responsible for feature
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Figure 3: Fuzzy Deep Learning

extraction from the input images. This model outputs a feature vector of size 5, representing the five
potential classes.

After feature extraction, the model introduces two fuzzy logic-based layers. The fuzzy layer takes
the extracted features as input and adds a layer of fuzzy logic, which enhances the interpretability of
the predictions by handling uncertainty in the classification process. The fuzzy layer converts crisp
inputs into fuzzy sets using membership functions. For each input xi, the fuzzy layer calculates the
degree of membership muA(xi) for each fuzzy set A. The fuzzy rule layer applies fuzzy rules to the
fuzzified inputs. Each rule is in the form of "IF-THEN" statements that relate the input variables to
the output. The output of each rule is a fuzzy set. A typical fuzzy rule can be expressed as:

Rj : IF x1 is Aj
1 AND x2 is Aj

2 AND . . . AND xn is Aj
n THEN y is Bj

Where Aj
i are the fuzzy sets corresponding to the input variables, xi and Bj is the fuzzy set for the

output y.
The degree of activation of each rule Rj is given by:

αj = µ
Aj

1
(x1) · µ

Aj
2
(x2) · . . . · µ

Aj
n
(xn)

The output y is then calculated using a weighted average of the fuzzy rule outputs:
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y =
∑M

j=1 αjyj∑M
j=1 αj

Where M is the number of rules, and yj is the output of rule Rj .
The defuzzification layer converts the fuzzy output sets back into a single crisp output. Common

defuzzification methods include the centroid method, which computes the center of gravity of the fuzzy
set and refines the fuzzy logic outputs, making them more precise for the final classification. Finally,
the softmax layer produces the final output, converting the refined fuzzy logic output into probabilities
for each of the five classes. This softmax output provides a probabilistic classification, where each
class is assigned a probability value summing to 1, indicating the model’s confidence in its predictions.
The combination of deep learning for feature extraction and fuzzy logic for interpretability allows
this model to handle complex medical image classification tasks, such as intracranial hemorrhage
subtyping, with greater precision and clarity.

The proposed model was trained using the supervised learning model with the categorical cross-
entropy loss function and Adam Optimizer. The above fuzzy deep learning system was effectively
trained with 80% of the data, 10% of the data was used as validation, and the remaining 10% of
the data was used as the testing set. Along the lines of evaluation, accuracy, precision, recall, and
F1-score were used as the indicators to measure the model’s performance. It was not only found that
the proposed combined model was superior to the previous models in terms of accuracy but also that
it was more interpretable than the other models, making it quite valuable in clinical decision-making.

4 Experimental Results and Discussion

4.1 Dataset

The RSNA is comprised of several members, as follows: radiologists, medical physicists, and other
healthcare professionals with more than 54,000 registered members, and the members hail from 146
countries. There is an understanding of AI’s ability to support the detection and classification of
hemorrhages in patients, which can assist in organizing clinical tasks.

This dataset was used for the Radiological Society of North America (RSNA) 2019 Machine Learn-
ing Challenge. This dataset is the collaborative work of the RSNA and the American Society of Neuro-
radiology. It is obtainable for the machine learning research community at no cost for non-commercial
purposes to build better algorithms for diagnosing intracranial hemorrhage [17].

4.2 Performance Metrics

The performance of the proposed model was assessed using the following metrics: specificity,
accuracy, precision, recall, and F1-measure, which are defined in Equations (1)-(5) [18, 19].

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Specificity = TN

FP + TN
(5)

False positives (FPs), false negatives (FNs), true negatives (TNs), and true positives (TPs) are all
measures of how well a model performs. Accuracy is the proportion of correct predictions. Precision
is the proportion of positive predictions that are correct. Recall is the proportion of actual positives
that are correctly predicted. The F-measure is a measure of how well a model predicts both positive
and negative cases.
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4.3 Results

The RSNA Intracranial Hemorrhage Detection dataset was divided into 80% for training, 10% for
validating, and 10% for testing. The experiment computer has a 64-bit operating system, an x64-based
processor, an Intel(R) Core (TM) i7-3612QM CPU @ 2.10 GHz and 2.1 GHz, and 10 GB RAM.

Figures 4 and 5 show the experiments’ results for the proposed fuzzy deep learning model. The
model was applied to the dataset for multiclassification. We distinguished between five types of
hemorrhages: IVH, IPH, SAH, EDH, and SDH. The values of all performance metrics are equal to
100%, for all types of hemorrhage.

Figure 4: Accuracy of Training and validation metrics for proposed fuzzy deep learning model

Figure 5: Loss of Training and validation metrics for proposed fuzzy deep learning model‘

The fuzzy deep learning model achieves an overall accuracy of 100%, with individual subtype
accuracies has 100% for, IVH, IPH, SAH, EDH, and SDH. Compared to baseline CNN models, our
approach shows a significant improvement in both accuracy and interpretability.
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4.4 Discussion

The integration of fuzzy logic into the deep learning framework enhances the model’s ability to
handle ambiguous cases and provide interpretable predictions. This is particularly beneficial in medical
settings where understanding the model’s decision-making process is crucial. The results highlight the
potential of fuzzy deep learning in improving diagnostic accuracy and reliability for ICH detection
on CT images. Table 1 provides an overview of the methodologies utilized for ICH detection. As
anticipated, robust testing sensitivity and specificity were observed in studies employing large datasets,
aligning closely with the performance of senior expert radiologists [8, 10]. SAH and EDH emerged
as particularly challenging subtypes for classification across various machine learning models [10],
demonstrating that our fuzzy deep learning model achieves state-of-the-art accuracy in detecting and
classifying ICH CT images. Our model enhances the accuracy of detecting and classifying ICH CT
images to 100%. The improved accuracy of our model could lead to more accurate diagnoses of ICH
CT images, which could improve patient outcomes.

Table 1: Comparison between the proposed fuzzy deep learning model and the state-of-the-art
methods in the performance results on brain computed tomography (CT) images dataset

Reference Methodology performance

Yuh et al. [6] Threshold-based Sensitivity: 98%
Specificity 59%

Li et al. [7, 8] SVM Sensitivity: 100%
Specificity 92%

Chilamkurthy et al. [9] CNN (REsNet18) and Random Forest
Sensitivity: 92%
Specificity: 70%
Average AUC of 0.93

Grewal et al. [10] CNN(DenseNet)+RNN
Sensitivity: 88%
Precision: 81%
Accuracy: 81%

jnawali et al. [11] CNN(ensemble)
Sensitivity: 77%
Precision: 80%
AUC of 0.87

Arbabshirani et al. [12] 3D CNN
Sensitivity: 71.5%
Specificity: 83.5%
AUC of 0.846

Lee et al. [13] CNN(ensemble)
Sensitivity: 78.3%
Specificity: 92.9%
AUC of 0.959

Ozaltin et al. [14] OzNet-NCA-ANN
Sensitivity: 100%
Specificity: 100%
AUC of 1.00

Proposed model Fuzzy and ResNet50
Sensitivity: 100%
Specificity: 100%
Accuracy: 100%

5 Conclusion
The proposed ensemble model provides solutions that can assist radiologists in their tasks, reducing

their workload and the potential for errors in ICH CT image detection. Early detection allows timely
medical intervention, leading to a quicker surgical schedule and better outcomes. This paper proposes
a robust fuzzy deep learning model incorporating ResNet50 models with fuzzy logic to differentiate
between epidural, subdural, subarachnoid, intraventricular, and intraparenchymal ICH states. The
brain CT images dataset was used to create and measure the performance of the proposed model. The
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dataset was preprocessed by resizing, rescaling, zooming, flipping, contrasting, and rotating images.
The proposed model was tested on the brain CT image dataset and compared to competitive methods
using the same dataset. The proposed model provided a maximum precision, recall, F1 measure,
and accuracy of 100%, 100%, 100%, and 100%, respectively, demonstrating state-of-the-art results.
However, the model has some restrictions. The main drawback of the proposed model is that it is
not effective when working with large datasets. One of the primary limitations therein is that its
overall evaluation focuses on a single type of imaging, which may not reflect all the details of ICH.
Furthermore, it also depends upon the quality of the data used as well as the variations available in
the data set. Despite the comprehensiveness of the brain CT image dataset, there might be some
clinical scenarios not included in the identified and labeled cases, which may affect the generalization
of the developed model. Additionally, the implementation of the proposed model has a loss validation
of about 0.49, which means that the model has fewer errors. Future work should focus on improving
the performance and generality of the developed model, especially the loss validation. Another avenue
is to explore the incorporation of other types of images, intermediate to traditional X-Ray.
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