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Abstract

This work presents the development of a model for generating trajectories for an autonomous
naval vehicle using genetic algorithms implemented in MATLAB. The primary objective is to op-
timize the routes the vehicle must follow, minimizing the traveled distance and ensuring efficient
navigation. Various scenarios were tested by varying model parameters such as the number of
environmental control points, the number of generations, and the number of individuals to evaluate
the genetic algorithm’s performance. In each scenario, results were analyzed in terms of minimum
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traveled distance and the optimal sequence of trajectory points (FITNESS). The results show that
the genetic algorithm can find efficient solutions, adapting to different configurations of points and
generations. Specific examples illustrate the optimal generated trajectories, accompanied by graph-
ical representations visualizing the sequence of points. This study demonstrates the effectiveness of
genetic algorithms in route planning for autonomous naval vehicles and provides a solid foundation
for future research and applications in autonomous navigation.
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1 Introduction
Quintero Bay, located in the Valparaíso Region of Chile, has been drastically transformed by in-

tensive industrial activity, making it a concerning focus of pollution [1]. Numerous industrial facilities,
including refineries and chemical plants, as well as port facilities, have left a profound environmental
impact, making it one of the most polluted areas in the country [2]. Quintero Bay has numerous
records of environmental emergencies due to the increase in pollutants such as PM2.5, PM10, PM6,
SO2, NOx, VOCs [3], among others, resulting in frequent health and environmental alerts. In this
context, there is a need to design an unmanned naval vehicle for Quintero Bay that allows reading
environmental indicators, adapting to different situations, and ensuring future interactions with other
vessels and port infrastructure. An essential part of this design is developing a navigation model based
on Genetic Algorithm and cluster formation, which generates an efficient route from various points
to collect samples within Quintero Bay avoiding different obstacles such as docks, ships, rocky areas,
ocean currents, tides, among others.

There is an urgent need to address the environmental and operational challenges present in Quin-
tero Bay and to leverage technological advancements that the use of unmanned naval vehicles offers in
exploring and monitoring maritime environments. This justification is detailed in the following points:

• Environmental Impact and Monitoring: Continuous monitoring of pollutants in its waters is
essential to evaluate and mitigate environmental impacts. Autonomous vehicles offer a versatile
and accurate platform for performing these tasks without exposing crew members to risks and
minimizing disturbance to the environment [4, 5].

• Technological Innovation: Designing a vehicle specifically adapted to the needs of Quintero Bay
represents a step forward in applying advanced technology to solve marine problems. Integrating
control systems, sensors, solar energy, and guidance and navigation devices into a single system
provides a unique opportunity to improve monitoring and exploration efficiency [6].

• Operational Efficiency and Costs: Using this autonomous naval vehicle in the bay reduces the
need for manned vessels, leading to significant savings in operational and personnel costs. Ad-
ditionally, automating routine and hazardous tasks increases safety and continuity of operations
[7].

• Resource Optimization: Mission planning for autonomous vehicles can be adjusted to specific
schedules and needs, optimizing resource use. Moreover, by allowing continuous data collec-
tion, these vehicles can provide detailed real-time information, improving decision-making and
environmental management [8, 9].

• Knowledge Generation: Implementing these vehicles will generate valuable data and knowledge
about the marine ecosystem in that area, useful for scientific research, policy formulation, and
environmental education [10].

The design of an Unmanned Naval Vehicle for Quintero Bay and developing an efficient navigation
algorithm will generate a unique capability to address critical environmental problems, the opportunity
to apply cutting-edge technology to solve them, benefits in terms of efficiency and costs, and contribute
to scientific knowledge and sustainable management of this valuable marine environment [11].
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2 Problem
Designing a Navigation System for an autonomous naval vehicle is crucial when considering its

operation in complex environments like Quintero Bay. This maritime area, known for hosting multiple
industrial facilities and considerable vessel traffic, presents significant challenges that the autonomous
vehicle must address. The navigation system must effectively detect and avoid various obstacles, such
as moving ships, docks, buoys, and other static and dynamic elements (currents and tides) present in
the bay.

Route planning also plays a crucial role. Planning algorithms must consider the positions of
detected obstacles and the maritime environmental conditions, such as currents, tides, and weather
conditions, which may affect the vehicle’s navigation [12]. This ensures that the optimal route is
chosen to minimize risks and maximize the vehicle’s operational efficiency.

Designing the Navigation System for an autonomous naval vehicle in Quintero Bay requires an
innovative approach that integrates advanced technology and efficient strategies.

3 Problem Formulation
Figure 1 shows the problem posed. The Autonomous Naval Vehicle must travel a set of points

marked with a red circle within Quintero Bay, collecting data or samples at each point to detect
possible pollutants in the water or air. Therefore, the shortest route must be found to allow the
vehicle to travel the set of points only once and return to the origin point. The route generation must
consider the bay’s obstacles, such as docks, ships, buoys, rocks, small fishing boat anchorage areas,
ocean currents, tides, etc.

This context leads us to use the Traveling Salesman Problem (TSP) methodology, using the Genetic
Algorithm heuristic implemented in MATLAB [13] and a cluster generation method [14].

Figure 1: Quintero Bay and sampling points

4 Solution Proposed
The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem. This

problem aims to find the shortest route that allows a salesman to visit a set of cities only once and
return to the origin city. It is relevant in fields such as logistics, route planning, and computational
biology [13]. The TSP can be mathematically formulated as a minimization problem. Given a set of
cities (points) and the distances between each pair of cities, the goal is to find a permutation of the
cities that minimizes the total distance traveled. Mathematically, if C is the set of cities and d(i, j)
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the distance between cities i and j, the objective is to find a sequence (permutation) of the cities
(c1, c2, . . . , cn) such that the total sum of the distances is minimal.

n−1∑
i=1

d(ci, ci+1)

There are multiple approaches to solving the TSP, classified as exact and heuristic. This work
selected the application of Genetic Algorithms, implemented through MATLAB, optimizing route
planning and decision-making in dynamic and complex environments. These algorithms use principles
inspired by biological evolution to generate optimal, adaptive, and robust solutions to unforeseen
environmental variations, such as the presence of ships, docks, and other static and dynamic obstacles.

The genetic algorithm’s ability to explore and exploit different possible solutions ensures that
the autonomous naval vehicle can navigate safely and efficiently, minimizing risks and maximizing
operational effectiveness. This innovative approach not only improves the accuracy and reliability of
the navigation system but also facilitates the vehicle’s adaptability to changing conditions, ensuring
optimal performance in Quintero Bay.

To incorporate restrictions such as docks, rocks, anchorages, and other obstacles, the TSP-GA
model is complemented with a heuristic to generate clusters [14] and connect these clusters through
common points. The model is calibrated with Data Adjustment to match the model’s outputs with
the defined restrictions.

The following two solution strategies are used in the search for these heuristics:

• Route first and cluster second

• Cluster first and route second

The "Cluster First and Route Second" strategy offers a significant advantage when addressing the
TSP in Quintero Bay, an area characterized by some fixed and dynamic obstacles. This strategy facil-
itates and provides flexibility to incorporate these obstacles as restrictions in the model using genetic
algorithms and clusters. In MATLAB, these restrictions can be quickly implemented by adjusting the
"distance matrix." By clustering first, optimal segments for the route are identified, facilitating the
integration of natural barriers and obstacles in the routing process. Then, by routing after, the route
within each cluster is optimized, ensuring that obstacles are considered in the distance calculations.
This methodology not only improves the model’s accuracy but also simplifies its implementation, as
modifications to the distance matrix in MATLAB are straightforward and manageable. Thus, a bal-
ance is achieved between computational efficiency and fidelity to the real environment of Quintero
Bay, ensuring practical, applicable, and flexible solutions in complex scenarios.

5 Cluster First and Route Second
As previously described, clusters or groups of points must first be generated considering the re-

strictions, using the "Sweep" algorithm [15]. The proposed method comprises three phases. In the
first phase, groups (sub-clusters) of points are generated, with each group of points being on the same
route of the naval vehicle in the final solution. In the second phase, common points between two clus-
ters are identified; these points will serve as bridges connecting two neighboring clusters. Therefore,
constructing the routes for each sub-cluster is a TSP that, depending on the number of points in the
sub-cluster, can be solved exactly or approximately. In the third phase, data refinement is performed
on the "Distance Matrix" in MATLAB, eliminating connections between points of different clusters
and forcing the connection of common points belonging to two clusters.

For the first phase, i.e., forming the sub-clusters, the "Sweep" algorithm is used. In this sweep
heuristic, clusters are formed by rotating a semi-line clockwise, originating from one end of the obstacles
(see Fig. 2) and incorporating the points "swept" by the semi-line until some restriction is exceeded,
such as an angle, battery charge, number of points, among others. Once a cluster is formed, another
cluster is formed starting from the last point reached until the same restriction is met. The process is
repeated until all points are in some cluster.
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In the second phase, common points between clusters are identified to ensure connectivity between
the clusters. These common points allow for a smoother transition between clusters, facilitating the
construction of a continuous and efficient route for the naval vehicle.

In the third phase, data refinement is carried out on the "Distance Matrix" in MATLAB. This
step involves updating the distance matrix to reflect the constraints imposed by the clusters and the
identified common points. This refinement ensures that the genetic algorithm accurately considers the
obstacles and restrictions present in Quintero Bay, leading to an optimal route for the autonomous
naval vehicle.

Figure 2: Sweeping points with a ray

Figure 3: Forming Clusters with Sweep

In Fig. 3, we illustrate how to generate clusters using the sweep method. This method starts
by selecting the edge of an obstacle as the center of a semicircle. A semi-straight line then sweeps
through a set of points in a 270-degree path, grouping all the points covered by the line into a cluster.
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Next, a new obstacle is chosen, and a new semicircle is formed, creating another cluster with the swept
points. The 270-degree sweep ensures that there are common points between clusters, which act as
bridges connecting adjacent clusters when forming the TSP route. This technique ensures complete
area coverage and facilitates the integration of obstacles into the route optimization model, allowing
efficient connections between different segments of the path.

Figure 4: Example of forming clusters of points with Sweep in Quinteros Bay

6 Refining a Distance Matrix in Matlab
Once the points belonging to each cluster and the common points between neighboring clusters,

which act as connection bridges, are identified, the "distances" matrix in MATLAB is refined. Also,
the obstacles are incorporated into the matrix; these obstacles are modeled by constraints on the
distance matrix D.

Let O be the set of obstacles, each represented as a forbidden region ok ⊂ R2.
The distance is modified depending on the presence of obstacles:

Figure 5 shows the general structure of the "distances" matrix in MATLAB [17], containing sub-
matrices representing clusters and zones of common points that act as bridges between neighboring
clusters. For example, the sub-matrix of distances between points of CLUSTER 1 is shown in yellow,
the sub-matrix containing distances between points of CLUSTER 2 is shown in orange, and the sub-
matrix containing distances between points of CLUSTER 3 is shown in light blue. The areas framed
in red represent sub-matrices of distances of points at the intersection of two neighboring clusters,
functioning as bridges between these clusters. These points can be unidirectional, omnidirectional, or
have other constraints, such as specific directions, branching points, or sink points. This modified dis-
tance matrix is the basis for running the TSP. Finally, areas of sub-matrices with problem constraints,
indicating infeasible connections, are shown in white.
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Figure 5: Distance matrix refinement

7 Genetic Algorithm Results
To evaluate the performance of the genetic algorithm used to generate the Naval Vehicle’s trajec-

tories, various scenarios with different variations in the number of points, population, and generations
were tested. In each scenario, the algorithm’s effectiveness was determined in terms of the number
of points and the resulting distance of the best trajectory sequence obtained (FITNESS). Figure 6
shows the result of applying the TSP method with constraints using a Genetic Algorithm with 50
points, a population of 200 individuals, and 800 generations, resulting in the BEST FIT of 467.8809.
This figure displays the optimal route sequence that the Naval Vehicle should follow, accompanied by
a graphical representation of this sequence. These examples illustrate how the algorithm optimizes
trajectories and demonstrate its ability to find efficient solutions in different configurations.
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Figure 6: Path resulting of a GA run

Next, Table 1 shows the results (FIT) of 10 runs of the Genetic Algorithm for the TSP with 200
generations, for different numbers of points, ranging from 10 points to 50 points.

Table 1: Results of 10 runs of the GA with 200 generations
N° of Points N° run of the GA

1 2 3 4 5 6 7 8 9 10
10 247,47 247,47 247,47 247,47 247,47 247,47 247,47 247,47 247,47 247,47
15 273,90 287,96 273,90 273,90 273,90 273,90 273,90 273,90 273,90 273,90
20 315,96 316,95 316,95 315,96 344,18 315,96 315,96 342,99 315,96 342,99
30 423,63 405,70 408,48 421,58 413,00 422,89 401,86 420,94 445,68 430,37
40 527,20 494,46 502,80 464,94 524,75 477,29 557,75 500,64 509,29 508,31
50 583,60 539,44 589,29 616,02 615,17 631,17 629,58 629,85 638,73 595,56

Here, it can be observed that for a layout of up to 10 points, the GA produces optimal routes
immediately and in very suitable times. Therefore, for clusters with 10 or fewer points, one can rely
on obtaining the optimal result by selecting the minimum with just a few GA runs. Similarly, for
10 points, all GA runs delivered the same fitness result, meaning there is no difference between the
average and the best fitness.

Between 10 and 15 points, the GA’s accuracy is still quite good. For example, in Table 7, it can
be seen that for 15 points, only in one out of 10 runs did the algorithm not deliver the optimal result.

Between 15 and 20 points, the minimum fitness result is repeated with some frequency, and with
a few runs, a good result can be achieved to provide an appropriate route for the Naval Vehicle.

In Table 2, the average results of ten GA runs for each group of points and their standard deviation
(SD) and relative standard deviation (RSD) are shown.
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Table 2: Summary of GA results
N° Points Best Fitness Mean SD RSD %

10 247,47 247,47 0 0
15 273,90 275,30 4,45 1,62
20 315,96 324,39 13,12 4,04
30 401,86 419,41 12,93 3,08
40 464,94 506,74 26,19 5,17
50 539,44 606,84 30,42 5,01

Figure 7 shows that as the number of points in the cluster increases, the difference between the
average and the best fitness also increases. This means there is a greater dispersion in the GA results
with 200 generations.

Figure 7: Difference between the mean and the best fitness for each group of points

Regarding the time taken by the GA [4] to produce a result, Table 3 shows ten runs of the GA for
each grouping of points (from 10 to 50).

Table 3: Time of 10 runs of the GA with 200 generations
N° of points GA Run Number

1 2 3 4 5 6 7 8 9 10
10 3,72 3,88 3,83 3,86 3,83 3,83 3,86 3,82 3,86 3,82
15 3,85 3,73 3,41 4,01 3,86 3,45 3,85 3,45 3,83 3,84
20 3,99 3,72 3,86 3,81 3,78 3,85 3,75 3,83 3,85 3,85
30 3,81 3,99 4,01 3,98 4,03 3,85 3,85 3,88 3,85 3,85
40 4,99 4,13 4,79 3,64 3,72 3,85 3,85 3,87 3,91 3,94
50 3,99 4,19 4,00 4,06 3,84 4,01 3,89 3,87 3,91 3,94

Table 4: Mean and SD of 10 runs of the GA with 200 generations
N° of points Mean SD

10 3,83 0,04
15 3,85 0,07
20 3,83 0,05
30 3,89 0,09
40 3,94 0,14
50 3,97 0,10

Based on the data from Table 3, the mean and standard deviation shown in Table 4 indicate that
both the average and SD of the times for the ten runs of the GA for each grouping of points (from
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10 to 50) do not show significant differences. This is because in genetic algorithms, the runtime is
proportional to the number of defined generations, which in this case is fixed at 200 generations for all
cases. However, slight increases in processing times can be observed as the number of points considered
in each run increases. This trend is also reflected in Figure 8, where each runtime is plotted for each
GA run per point grouping.

Figure 8: GA run process time

Based on the results obtained in Table 1, it is recommended that for a cluster containing 30 or
more points, the number of generations and/or population size in the genetic algorithm code should
be increased. However, this will result in longer execution times for the GA.

Considering the requirements for the design of the system in managing the Naval Vehicle, given
the system’s dynamics, the entire process of clustering creation, trajectory generation, and dispatch
assignment should ideally take no more than one minute. Therefore, it is crucial for the GA to provide
a suitable response as quickly as possible.

Next, Table 5 shows the results of GA runs for 50 points, varying the number of generations. The
aim is to determine the impact on the times (in seconds) that the GA takes to deliver results by
varying the number of generations in the model.

Table 5: GA result for 50 points varying number of generations
N° Generations GA FITNESS

BEST MEAN SD
300 530.6143 555.8617 13.0781
400 501.5421 535.3700 20.6006
490 486.8844 517.6826 20.2412
600 479.3115 505.0828 13.1281
800 467.8809 495.2497 17.6451

TIME GA RUN MEAN
MEAN SD
5.6279 0.047
7.3773 0.073
8.9190 0.065
10.8182 0.089
15.6451 0.826

Next, Figure 9 shows a graph illustrating that as the number of generations increases, the GA
finds better fitness values and equivalently improves the average fitness values as shown in Figure 10.
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Figure 9: Variation of the best fitness value modifying the number of generations

Figure 10: Variation of the mean fitness value with No. of generations

Finally, Figure 11 shows how the average time for the GA to deliver a result (run) increases as the
number of generations also increases.
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Figure 11: Variation of the average run time by modifying the number of generations

Next, we observe the behavior of the GA by changing only the population size of individuals. Table
6 shows results from several runs of the GA with variations in the population size ranging from 60 to
300 individuals. The values displayed represent the route distance obtained by the GA in each run
(out of 10) with 50 points and 800 generations.

Table 6: Results of 10 GA runs varying the population number
N° of POP N° run of the GA

1 2 3 4 5 6 7 8 9 10
60 506,17 485,23 516,57 527,14 486,94 471,37 505,47 493,74 485,08 488,02
100 470,72 476,97 479,20 506,01 477,49 482,27 495,24 488,95 478,84 486,37
150 480,25 478,40 484,01 479,90 489,10 458,97 487,17 494,44 491,00 481,14
200 502,17 468,84 482,19 477,69 485,97 493,25 495,48 507,88 486,92 498,95
250 477,09 483,11 458,97 482,60 515,47 496,54 508,13 471,85 489,81 474,30
300 466,81 458,42 482,11 490,62 461,59 492,07 495,62 469,80 500,19 477,48

The results shown in Table 6 indicate that there is no significant difference in the average value
of GA runs for each population size when varying the number of individuals in the GA population.
However, better results could be achieved since increasing the population size would explore other
areas of the solution space due to mutations, but this does not guarantee finding a better solution.
The number of GA runs would need to be increased.

Table 8 shows variations in population size and the impact on CPU-Timing in seconds.

Table 8: CPU-Timing (sec) of the GA in 10 run with 50 points and 800 generations
N° of POP N° run of the GA

1 2 3 4 5 6 7 8 9 10
60 15,11 15,10 15,10 15,15 15,18 15,18 15,16 15,17 15,14 15,12
100 15,53 15,50 15,57 15,64 15,54 15,62 15,68 15,65 15,63 15,60
150 16,15 16,18 16,14 16,10 16,01 16,11 16,04 16,09 16,06 16,04
200 16,64 16,69 16,63 16,70 16,63 16,66 16,66 16,66 16,66 16,68
250 17,25 17,23 17,27 17,22 17,16 17,45 17,23 17,18 17,23 17,20
300 17,77 17,77 17,82 17,74 17,83 17,74 17,80 17,76 17,81 17,80



https://doi.org/10.15837/ijccc.2024.6.6865 13

In this table, it can be observed that the CPU-Timing increases by an insignificant amount in
terms of seconds. Therefore, this parameter is not crucial for finding quick and good solutions to the
TSP using GA. However, it is recommended to keep a high value for this parameter. Based on the
results shown in this analysis, the following values for parameters such as the number of generations
and population are suggested according to the number of points. These values are shown in Table 9.

Table 9: Suggested GA parameter values according to the number of points
N° of Points N° of Generations N° of Population

10 200 60
20 200 60
30 950 60
40 950 60
50 600 200
60 800 200
70 900 200
80 900 200
90 950 200
100 1500 300
110 1500 300
120 1500 400
130 1500 400
140 1500 400
150 1500 400

8 Conclusions
This study presents a comprehensive analysis of the implementation of a Navigation System for

autonomous naval vehicles, utilizing cluster formation and Genetic Algorithms (GA) for route genera-
tion. Throughout the work, various GA parameters, such as the number of generations and population
size, have been evaluated for their impact on the performance and efficiency of the generated routes.
The results indicated that for clusters with up to 10 points, the GA can find optimal solutions quickly.
However, as the number of points increases, the accuracy and processing time of the GA also increase,
suggesting the need to adjust the algorithm’s parameters for larger clusters. It is recommended to
increase the number of generations and population for clusters with 30 or more points, although this
will increase execution time. Additionally, it has been shown that the GA can explore different areas
of the solution space with a larger population size, though this does not guarantee better solutions in
all cases. The integration of these elements, along with advanced sensing and data processing tech-
nologies, is crucial to ensure safety, efficiency, and regulatory compliance in autonomous navigation
within challenging port environments such as Quintero Bay. In summary, a model has been designed
and tested that determines the appropriate parameters to guarantee efficient routes, thus ensuring the
feasibility of autonomous navigation in these environments.
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