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Abstract

Image crack segmentation is a critical task in infrastructure maintenance, as accurate crack
detection is essential for structural health monitoring and preventing potential risks. Although
traditional Convolutional Neural Networks (CNN) have achieved certain successes in image crack
detection, they still exhibit limitations in handling noisy images and detecting fine cracks. This
study proposes a VGG network based on dilated residual convolution and path-enhanced optimiza-
tion to improve the accuracy and efficiency of image crack segmentation. The study utilizes fuzzy
morphological filtering for preprocessing, introduces dilated convolution to expand the receptive
field, employs residual structures to enhance feature transmission, and incorporates path enhance-
ment modules to boost network performance. The experimental evaluation was conducted using
the SDNET2018, METU Dataset, and CFD datasets. The results show that the proposed method
achieves a mean intersection over union (MIoU) of 94.60% and a mean accuracy of 96.18%. The
improved algorithm demonstrates significant advantages in noise interference handling and detail
processing.

Keywords: Crack Segmentation; Dilated Residual Convolution; Path Enhancement Module;
Neural Network
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1 Introduction
The aging infrastructure and increasing traffic loads have made crack detection a critical aspect

of ensuring the safety of buildings and roads. Accurate image crack segmentation aids in the timely
identification and repair of structural defects, preventing potential safety hazards [1]. In recent years,
Convolutional Neural Networks (CNN) have been widely adopted in the field of image crack detection
due to their powerful feature extraction and representation capabilities [2] [3]. Crack segmentation
techniques based on CNN [4] and VGG [5] architectures have become a research hotspot.

For instance, Wu et al. [6] combined the Retinex image enhancement algorithm with the VGG_19
model to study efficient crack image segmentation, focusing on crack length and width information.
However, improvements in detection accuracy are still needed. Hao et al. [7] proposed a multi-task en-
hancement method based on Faster-RCNN, aimed at detecting fine cracks, but the model’s detection
performance requires further enhancement. Vishal et al. [8] introduced an automated pavement dis-
tress analysis system based on the YOLOv2 deep learning architecture, which offers high operational
speed but performs poorly in terms of crack detection quantity and clarity. Sukhad et al. [9] developed
an algorithm based on SqueezeNet and texture encoding layers, which shows good robustness and ef-
fectiveness but lacks real-time detection performance. Madiha et al. [10] presented a transfer learning
method using the VGG19 network, which improves model generalization but consumes substantial
computational resources.

In 2015, a fully convolutional network architecture (UNet) was proposed for image segmenta-
tion [11]. This architecture combines high-resolution features with low-resolution contextual infor-
mation, using a symmetrical structure and skip connections, making it highly effective in crack seg-
mentation tasks. Building on this UNet architecture, Vladimir et al. [12] proposed the DAUNet
model, which offers advantages in terms of lightweight design and training time but has poor noise
handling performance. Fan et al. [13] proposed a UNet-based convolutional neural network for auto-
mated crack segmentation, which efficiently handles irregular and noisy images, achieving automated
segmentation. However, its performance in detail segmentation is suboptimal. Zhou et al. [14] intro-
duced the UNet++ architecture, which enhances crack segmentation performance through dense skip
connections and a deep supervision mechanism.

Furthermore, researchers have applied attention mechanisms to image crack segmentation. Luo
et al. [15] proposed the STrans-YOLOX model, which combines CNN and Swin Transformer, incor-
porating a global attention guidance module. Although it enhances multi-scale feature extraction
capabilities, further improvements in crack detection accuracy and denoising are needed. Zhang
et al. [16] introduced the APLCNet algorithm, which effectively improves crack detection accuracy
through channel attention and spatial attention mechanisms, but its performance in handling crack
contours is inadequate. Saberironaghi et al. [17] developed a crack segmentation model combining
a multi-scale attention mechanism with an efficient UNet, which excels in handling complex back-
grounds and fine cracks, though it demands significant computational resources and has a complex
training process. Katsamenis et al. [18] proposed the R2AU-Net model, which integrates attention
mechanisms and few-shot learning, allowing dynamic fine-tuning to optimize crack segmentation per-
formance based on user feedback. However, the model’s high computational resource requirements
and training complexity remain challenges.

In addition, Fan et al.’s [19] FPHBN network can effectively extract image features but has poor
detection efficiency. Xie et al. [20] proposed a fully convolutional neural network and deep super-
vision network (HED) for edge detection from image to image, optimizing computational speed but
performing poorly in detail handling.

To address the shortcomings of existing methods in noise handling and fine crack detection, this
study proposes a VGG network based on dilated residual convolutions and path enhancement op-
timization, aiming to improve the accuracy and efficiency of image crack segmentation. The study
employs fuzzy morphological filtering for preprocessing to reduce noise impact on crack detection. In
the network structure, dilated convolution modules are used to expand the receptive field, allowing
the network to capture richer contextual information. Simultaneously, residual structures enhance
the transmission and fusion of features at different levels. The path enhancement module further op-
timizes feature paths, enhancing the model’s segmentation performance. Finally, deconvolution and
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Figure 1: Schematic Diagram of the Network Structure

upsampling modules restore the image size, achieving crack segmentation.

2 Realted

2.1 VGG Network

The VGG model is one of the most commonly used convolutional neural network models, proposed
by Simonyan and Zisserman. This model processes images by sequentially applying multiple 3×3
convolutions, simulating the receptive field of the image. In this study, we use the VGG_13 network
model as the base network for crack image segmentation. The network structure is shown in figure 1.

The VGG_13 network consists of 5 convolution blocks and 3 fully connected layers. The number
of convolution kernels in the 5 convolution blocks are 64, 128, 256, 512, and 512 respectively. Each
convolution block consists of 2 convolution layers, each with a convolution kernel size of 3×3. The
convolution kernels slide over the input feature map, extracting features through weighted summation
over local areas, as shown in equation 1.

Yi,j,k = ReLU(
M−1∑
m=0

N−1∑
n=0

C−1∑
c=0

Xi+m,j+n,c ·Wm,n,c,k) (1)

where Yi,j,k represents the value of the k-th channel at position (i,j) in the output feature map,
Xi+m,j+n,c represents the input image, W is the convolution kernel, and bk represents the bias of the k-
th channel. Each convolution block is followed by a max pooling layer, which is used for downsampling
with a pooling kernel of 2×2, as shown in equation 2.

Yi,j,k = max
m,n

Xi+m,j+n,k (2)

where (i, j) is the top-left position of the pooling window. The last three layers of the network are
fully connected layers, computed as shown in equation 3.

y = σ(Wx+ b) (3)

where W is the weight matrix, x is the input feature, and σ is the activation function, with ReLU
used in the first two layers and Sigmoid in the last layer. To reduce the number of network parameters
and speed up model training, the original number of nodes in the fully connected layers was reduced
from 4096, 4096, 1000 to 2048, 2048, 8, respectively, ultimately achieving crack segmentation.

2.2 Dilated Convolution

Dilated convolution [21] , also known as atrous convolution, significantly expands the receptive
field without increasing the number of parameters. In image segmentation, dilated convolution ef-
fectively captures multi-scale information, improving segmentation accuracy. It extends the receptive
field by inserting holes (zeros) between convolution kernel elements without increasing the number of
parameters, as shown in equation 4.

Yi,j,k = ReLU(
M−1∑
m=0

N−1∑
n=0

C−1∑
c=0

Xi+d·m,j+d·n,c ·Wm,n,c,k + bk) (4)

where d is the dilation rate, indicating the spacing between kernel elements.
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Figure 2: Dilated Residual Convolution

This study integrates residual modules [22] with dilated convolution, proposing dilated residual
convolution to obtain deeper feature information. The structure of the dilated residual convolution is
shown in Figure 2.

As shown in 2 , the dilated residual convolution consists of two 3×3 dilated convolution layers
and one 1×1 convolution layer residual. Convolution layers are followed by batch normalization (BN)
and ReLU activation function. F (Y ) represents the residual path, where the identity connection path
Y’ after a 1×1 convolution is added to the data path across the convolution, achieving the final result
without introducing additional computational and parameter overhead.

3 Research method
This study proposes an improved VGG_13 model, combining residual dilated convolution and

path enhancement to enhance the accuracy and detail processing capability of image segmentation.
The input images are denoised using fuzzy morphological filtering before being used to train the
improved neural network model. The model is based on an encoder-decoder architecture. The encoder,
consisting of convolutional blocks, residual dilated convolution blocks, and path enhancement modules,
extracts features from the crack images. The decoder, composed of deconvolution and upsampling
modules, performs the crack segmentation.

3.1 Image Preprocessing

To effectively reduce crack noise and better enhance crack edge and detail information, this study
proposes using fuzzy morphological filtering [23] for crack preprocessing. Fuzzy morphological filter-
ing combines the advantages of fuzzy logic and mathematical morphology. Mathematical morphology
enhances crack edge information and fills and connects cracks. Since grayscale images inherently pos-
sess fuzziness, using fuzzy logic effectively classifies and filters noise, thus avoiding noise amplification
during dilation or erosion processes. The input image is converted to a grayscale image to facilitate
fuzzy morphological operations. The image is then normalized and resized to 224x224 to standard-
ize the dataset for the neural network. Finally, fuzzy morphological filtering is applied, consisting
of fuzzy dilation, fuzzy erosion, and fuzzy opening and closing operations. Fuzzy dilation enhances
image brightness by combining each pixel with the maximum value in its neighborhood, as calculated
in Formula 5.

UA⊕B(s) = sup
p∈B

min(UA(µ− γ), UB(γ)) (5)
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Figure 3: Schematic Diagram of the Improved VGG Network Model

where UA represents the fuzzy set of the original crack image, UB represents the fuzzy set of the
structuring element, sup represents the supremum, and minrepresents the minimum value. Fuzzy
erosion weakens image brightness by combining each pixel with the minimum value in its neighborhood,
as shown in equation 6.

UA⊖B(s) = inf
p∈B

max(UA(µ+ γ), 1 − UB(γ)) (6)

where inf represents the infimum, and max represents the maximum value. In the erosion op-
eration, for each pixel in the image, the maximum value of its neighborhood corresponding to the
structuring element is taken, and the minimum value of these maxima is used as the eroded pixel
value. This way, erosion retains smaller pixel values and reduces larger ones in each local area. Fuzzy
opening first performs fuzzy erosion followed by fuzzy dilation to remove small objects and noise, as
calculated in equation 7.

UA·B(s) = (UA ⊖B) ⊕B (7)

Fuzzy closing first performs fuzzy dilation followed by fuzzy erosion to fill small holes and fine
cracks in the image, as shown in equation 8.

UA·B(s) = (UA ⊕B) ⊖B (8)

Through fuzzy morphological filtering, crack image noise is significantly reduced while preserving
and enhancing crack detail information.

3.2 Improved VGG_13 Model

To improve the accuracy and detail processing capability of crack segmentation, this study pro-
poses an improved VGG crack segmentation network. Based on the VGG_13 network, this model
integrates residual dilated convolution and path enhancement modules to enhance image segmentation
performance. The improved model adopts an encoder-decoder architecture, as shown in Figure 3.
The encoder retains the first four convolution layers of VGG_13, where the first, third, and fourth
layers extract basic features of crack images through standard convolution operations. The second
layer uses the dilated residual convolution module shown in Figure 2, utilizing convolution layers with
different dilation rates to capture multi-scale features, thus expanding the receptive field and enhanc-
ing the ability to capture complex edges and details without significantly increasing computational
cost. The fifth convolution block uses the improved dilated convolution module (DCM) to further
enhance the network’s ability to capture features at different scales. The RDC introduces a higher-
level dilated convolution structure and multi-scale feature fusion mechanism, effectively enhancing
the model’s feature extraction capability and robustness. Following the RDC, a path enhancement
module is introduced to improve feature expression capabilities at different levels. The PAM module
enhances deep feature representation by utilizing shallow feature information through top-down fea-
ture transmission. The decoder part restores the image size through deconvolution and upsampling
operations, achieving crack segmentation.
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Figure 4: Residual Dilated Convolution Module

3.2.1 Residual Dilated Convolution Module

To enhance the network’s feature extraction capability, an improved residual dilated convolution
module (RDC) is proposed. This module captures feature information over a larger range by in-
troducing convolution layers with different dilation rates and multi-scale feature fusion mechanisms,
improving the ability to capture complex scenes and detail features. The RDC structure is shown in
Figure 4.

As shown above, the input feature map Y is transformed through a series of convolution layers with
different dilation rates. This configuration ensures effective capture and combination of multi-scale
features. The improved residual dilated convolution module consists of four branches, with convolution
dilation rates of 1, 3, and 5, respectively. These branches aim to capture features at different scales,
and the convolution operation is shown in equation 9.

Fi(Y ) = σ(Wi ∗ Y + bi) (9)

where Wi and bi are the weights and biases of the ∗ convolution layer, and ∗ represents the
convolution operation. In the entire residual dilated convolution module, 1×1 convolution is used
to capture local features and reduce dimensions. The 3×3 convolution (dilation rate=1) extracts
standard convolution details. The 3×3 convolution (dilation rate=3) captures mid-range context by
expanding the receptive field. The 3×3 convolution (dilation rate=5) extracts broader contextual
information.

After processing through different branches of dilated convolution, all branch outputs are concate-
nated and fused through another 1×1 convolution, as shown in equation 10.

F (Y ) = σ(Wf ∗ concat(F1(Y ), F2(Y ), F3(Y ), F4(Y ) + bf ) (10)

where Wf and bf are the weights and biases of the 1×1 convolution layer. The final output is obtained
through residual connection by adding the input feature map processed by the 1×1 convolution layer
to the output of the improved residual dilated convolution module, as shown in equation 11.

I = Y
′′ + F (Y ) (11)

where Y ′′ represents the result processed through the 1×1 convolution layer. The feature map
processed by the dilated residual module retains the original features while enhancing the multi-
scale context. To reduce the issue of local detail retention deficiency and increased computational
complexity caused by high dilation rates, this study adjusts the convolution kernel size and fusion
method. The dilation rates of 2 and 5 are adjusted to receptive fields of 5 and 10, respectively.
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Spatially separable convolutions replace a 5×5 module with two 5×1 and 1×5 convolution modules,
maintaining the receptive field while reducing network parameters and increasing nonlinearity and
model expressiveness. A 1×1 convolution is added after each branch to adjust linear excitation and
dimensions, reducing parameters and computation, enhancing efficiency. Global average pooling makes
feature layers more easily transformed into classification probabilities, avoiding overfitting. Global
average pooling computes the feature vector by averaging all pixel values in the feature map, as shown
in equation 12.

GAP = 1
H ×M

H∑
h=1

M∑
m=1

Yab (12)

where H is the height of the feature map, M is the width of the feature map, Yab represents the pixel
value at row a and column b in the feature map.

∑H
h=1

∑M
m=1 Yab represents the sum of all pixel values

in the feature map, and 1
H×M is the normalization factor.

3.2.2 Path Enhancement Module

To compensate for information loss caused by continuous pooling and convolution operations and
improve the accuracy and efficiency of crack segmentation, this study proposes using a Path Augmen-
tation Module (PAM) to optimize the model. The PAM module enhances deep feature representation
by utilizing shallow feature information through top-down feature transmission. The PAM module
extracts feature maps from shallow (low-level) and deep (high-level) layers of the network. Shallow
feature maps contain detail and location information, while deep feature maps contain semantic in-
formation. The shallow feature map Flow is upsampled and element-wise added to the deep feature
map, resulting in fused features, then processed by a convolution layer, as shown in equation 13.

Ffused(i, j) = F up
low(i, j) + Fhigh(i, j) for i ∈ [1, Ghigh], j ∈ [1, Ghigh] (13)

The fused result is further processed by a convolution layer, as shown in equation 14.

Fenhanced(i, j) =
C∑

m=1

C∑
n=1

ωnm · Ffused(i+m− 1, j + n− 1) + b (14)

where C is the convolution kernel size, ωnm is the convolution kernel weight. By effectively utilizing
shallow feature information, the PAM module enhances deep feature representation, improving the
accuracy and detail capture of crack segmentation.

3.3 Loss Function

To ensure the model focuses on important detail information and enhances the detection and
segmentation of fine cracks, this study uses the Dice coefficient loss function to optimize network
parameters. The Dice coefficient is a statistical measure of similarity between two sample sets. During
forward propagation, the predicted values and ground truths are computed, and the Dice loss function
is calculated as shown in equation 15.

LossDice = 1 −
2

∑O
ψ=1QψDψ∑O

ψ=1Qψ +
∑O
ψ=1Dψ

(15)

where Qψ represents the predicted value of the ψ-th pixel,Dψ represents the true label of the ψ-th
pixel, and O represents the total number of pixels. During backpropagation, the gradient of the loss
function concerning the predicted value Qψ is calculated, as shown in equation 16.

∂LossDice
∂Qφ

= ∂

∂Qφ
(1 −

2
∑O
φ=1QφDφ∑O

φ=1Qφ +
∑O
φ=1Dφ

) (16)

Let Z=
∑O
φ=1Qφ +

∑O
φ=1Dφ and E=

∑O
φ=1Qφ, then the Dice loss function is simplified as shown

in equation 17.
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LossDice = 1 −
2

∑O
φ=1QφDφ

Z + E
(17)

Next, the gradient is calculated by applying the chain rule, computing the numerator and denom-
inator, resulting in the final gradient formula for the Dice loss function concerning the predicted value
Qψ, as shown in equation 18.

∂LossDice
∂Qφ

= ∂

∂Qφ
(1 −

2
∑O
φ=1QφDφ

Z + E
) (18)

Through substitution and simplification, the final gradient formula is derived. Using gradient
descent, the gradient is calculated, and network weights are updated to minimize the loss function,
enhancing the modelś segmentation performance.

4 Experiment analysis

4.1 Experimental Environment

The network is implemented using the deep learning framework TensorFlow, and the experiments
are conducted on an HP Z8 G4 graphics workstation. The device is equipped with two Intel Xeon
5218R CPUs, each with 20 cores and a clock speed of 2.1 GHz, totaling 40 cores. The graphical
processing capability is provided by an A4000 series 16GB GPU. The system memory is 128GB, and
the storage solution includes a 512GB SSD and a 2TB HDD. The operating system is Linux, and tests
are conducted on self-built datasets, SDNET2018, Crack500, and CFD datasets. Dataset information
is shown in table 1.

Table 1: Dataset Information
No Dataset Name Data Description
1 Self-built Dataset 12000 manually labeled crack images
2 SDNET2018 56000 images of mixed concrete
3 Crack500 500 crack images
4 CFD 118 crack images

In total, the dataset contains 68,618 images. To expand data resources, this study uses rotation,
translation, and flipping methods for data augmentation to increase data diversity. After augmen-
tation, the dataset contains 117,236 images. To test the model’s effectiveness, the study uses the
SDNET2018 and a random 70% portion of the self-built dataset for model training, with validation
on the self-built dataset, Crack500, and CFD datasets.

4.2 Evaluation Metrics

To quantitatively analyze the differences between algorithms, common image segmentation evalu-
ation metrics are used to compare the performance of this algorithm with other algorithms, including
Accuracy, Recall, Mean Pixel Accuracy (MPA), and Mean Intersection over Union (MIoU). Accuracy
evaluates the overall accuracy of segmentation results, calculated as shown in equation ??.

Accuracy = TP + TN

FP + FN + TP + TN
(19)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. Accuracy
reflects the proportion of correctly classified samples, ranging from [0, 1], with higher values indicating
better segmentation performance. Recall evaluates the model’s detection capability, calculated as
shown in equation 20.

Recall = TP

FN + TP
(20)
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Recall reflects the proportion of actual positives correctly identified, ranging from [0, 1], with
higher values indicating better segmentation performance. Mean Pixel Accuracy evaluates the pixel
classification accuracy of each category, calculated as shown in equation 21.

MPA = 1
T

L∑
q=1

TPq
FNq + TPq

(21)

where L is the number of categories, and TPq and FNq are the true positive and false negative of
the q − th category, respectively. MPA reflects the average accuracy of each category, ranging from
[0, 1], with higher values indicating better segmentation performance. Mean Intersection over Union
evaluates the overlap between segmentation results and actual results, calculated as shown in equation
22.

MIoU = 1
T

L∑
q=1

TPq
FNq + TPq + FPq

(22)

where L is the number of categories, TPq FNq and FPq are the true positive, false positive, and
false negative of the q-th category, respectively. MIoU reflects the average intersection over union of
each category, ranging from [0, 1], with higher values indicating better segmentation performance.

4.3 Analysis of Image Denoising with Different Algorithms

To validate the effectiveness of image preprocessing, the study uses fuzzy mathematical morphology
filtering, bilateral filtering, Gaussian filtering, and wavelet filtering for denoising, as shown in Figure
??.

From Figure 5, it can be seen that fuzzy mathematical morphology filtering effectively filters out
white noise in images without affecting the detail features of cracks in the original image, while wavelet
filtering shows poor noise reduction performance and significant detail loss during denoising. To objec-
tively validate the denoising performance of algorithms, the study randomly selects 200 crack images
for denoising using fuzzy mathematical morphology filtering, bilateral filtering, Gaussian filtering, and
wavelet filtering, and evaluates them using the Structural Similarity Index (SSIM), Mean Squared Er-
ror (MSE), and Normalized Correlation (NC), with results retained to two decimal places, as shown
in Table 2.

Table 2: Performance Evaluation of Different Filters
Filter SSIM MSE NC
Fuzzy Mathematical Morphology 0.98 0.27 0.99
Bilateral Filtering 0.42 0.03 0.93
Gaussian Filtering 0.22 0.20 0.92
Wavelet Filtering 0.18 0.12 0.91

As shown in Table 2, the best SSIM, MSE, and NC results are all from fuzzy mathematical
morphology filtering, indicating its excellent performance in handling complex structures and retaining
details. This is due to fuzzy mathematical morphology filtering based on fuzzy set theory, which allows
for effective handling of uncertainty and fuzziness. Crack edges are often fuzzy and irregular, and
fuzzy set theory can better describe and retain these fuzzy edges through pixel gray level fuzzification.
Additionally, fuzzy mathematical morphology filtering uses multi-scale structuring elements to process
images at different scales, effectively capturing structural features of different scales. Thus, fuzzy
mathematical morphology filtering can remove noise while preserving image structure and details,
enhancing segmentation accuracy and reliability.

4.4 Analysis of Segmentation Effects with Different algorithms

To validate the effectiveness of our algorithm, the study trains and validates the model on self-
built datasets and SDNET2018, and verifies it on self-built, Crack500, and CFD crack datasets using
CNN [4], HED [20], VGG_19 [10], UNet++ [14] ,and our algorithm, as shown in Figures 5 to 7.
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Figure 5: Segmentation Effects on Self-Built Dataset with Different Algorithms

Figure 6: Segmentation Effects on CFD Dataset with Different Algorithms

Figure 7: Segmentation Effects on Crack500 Dataset with Different Algorithms
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From Figures 6 to 8, it can be observed that HED and CNN perform the worst on the self-built
dataset, CDF dataset, and Crack500 dataset. On the self-built dataset, these methods incorrectly
identify imprints as cracks, adversely affecting image segmentation results. In the CFD dataset, HED
and CNN are heavily influenced by road particle noise, identifying noise particles as cracks, which
impacts segmentation accuracy. On the Crack500 dataset, both algorithms exhibit poor segmentation
clarity. VGG_19 performs better, as it can somewhat filter out noise in the CFD dataset and correctly
handle imprints in the self-built dataset. However, it still has room for improvement, especially
in segmenting clear areas on the Crack500 dataset. UNet++, with its U-shaped architecture and
skip connections, performs better than the previous three methods, but it still lacks in handling
fine crack details accurately and clearly. Our algorithm effectively filters out road particle noise and
imprint noise, accurately identifies fine crack boundaries, and achieves better crack detail segmentation.
This performance is attributed to our algorithm’s use of fuzzy mathematical morphological filtering,
which reduces noise while preserving detail features. The multi-scale dilated convolution module and
path enhancement module help maintain fine features while capturing contextual information. To
objectively evaluate the accuracy of our algorithm in image crack segmentation, this study uses the
self-built dataset, Crack500, and CFD datasets for validation. The experiments use accuracy (ACC),
mean pixel accuracy (MPA), mean intersection over union (MIoU), and recall as evaluation metrics.
The average values of these metrics are taken to eliminate machine errors, with results rounded to two
decimal places as shown in Tables 3 to 5.

Table 3: Segmentation Performance Analysis on Self-Built Dataset with Different Algorithms
Algorithm Accuracy MPA MIoU Recall
CNN 92.31 94.11 92.04 90.02
HED 94.33 94.74 92.51 92.53
VGG19 95.26 95.03 93.58 95.95
UNet++ 96.34 96.11 93.78 96.16
Our Algorithm 96.97 96.86 94.98 96.87

Table 4: Segmentation Performance Analysis on Crack500 Dataset with Different Algorithms
Algorithm Accuracy MPA MIoU Recall
CNN 92.31 93.11 90.54 91.16
HED 94.33 94.74 91.08 92.53
VGG19 95.26 95.63 91.70 93.86
UNet++ 95.84 96.21 92.78 95.21
Our Algorithm 96.37 97.36 93.18 95.92

Table 5: Segmentation Performance Analysis on CFD Dataset with Different Algorithms
Algorithm Accuracy MPA MIoU Recall
CNN 88.13 89.02 89.25 89.12
HED 91.03 91.78 91.89 90.80
VGG19 94.56 94.81 94.33 94.14
UNet++ 94.85 95.01 94.89 94.78
Our Algorithm 95.21 95.87 95.63 96.31

From Tables 3 to 5, it is evident that CNN performs relatively poorly across all datasets, par-
ticularly in complex scenarios where it struggles to capture fine crack features. Although the HED
algorithm outperforms CNN, it still falls short compared to VGG_19 and UNet++, indicating room
for improvement in feature extraction and detail recovery. Despite decent accuracy, HED’s perfor-
mance in mean intersection over union (MIoU) and recall is somewhat lacking, possibly due to its
heavy reliance on deep networks for feature extraction, which can hinder detail recovery. UNet++,
as an improved version of Unet, demonstrates better segmentation performance than CNN, HED,



https://doi.org/10.15837/ijccc.2025.2.6872 12

and VGG_19, but it still does not surpass our proposed algorithm, highlighting the architectural
optimizations in our method. Our algorithm exhibits outstanding segmentation performance on the
self-built dataset, CRACK500 dataset, and CFD dataset. It achieves the highest accuracy (96.97%)
and mean pixel accuracy (96.86%) across all datasets, indicating excellent fitting capability to the
training data and precise extraction and segmentation of crack features. On the CRACK500 dataset,
our algorithm also leads in all metrics, particularly in accuracy (96.37%) and mean pixel accuracy
(97.36%). This demonstrates not only its superior performance on the self-built dataset but also
its strong generalization ability, maintaining high performance across different datasets. The CFD
dataset, often containing more complex crack scenarios, shows our algorithm with significantly higher
mean intersection over union (91.89%) and recall (94.19%) compared to other algorithms, underscoring
its advantage in handling complex and noisy environments. The exceptional performance of our algo-
rithm in crack segmentation tasks is attributed to its innovative encoder-decoder design, combining
dilated residual concepts and multi-scale feature extraction, enabling better capture of crack details
and features. The integration of deconvolution and upsampling effectively restores image details dur-
ing the decoding process. Furthermore, its excellent performance across different datasets showcases
its strong generalization ability and robustness.

4.5 Comparison of Different Iteration Numbers

To explore the patterns of network training, we conducted experiments on the self-built dataset to
study how different iteration numbers correspond to different experiment results, as shown in Table 6.
As shown in Table 6, with the increase in iteration numbers, all evaluation metrics (Accuracy, MPA,

Table 6: Analysis of Different Iteration Numbers
iteration number Accuracy MPA MIoU Recall
Number =1 88.84 91.65 89.69 93.12
Number =3 95.73 95.65 93.79 96.12
Number =4 96.95 96.86 94.98 96.87
Number =5 96.82 96.80 93.11 96.73
Number=6 96.46 96.73 92.91 96.48

MIoU, Recall) significantly improve, particularly in the first four iterations. The metrics reach their
peak when the iteration number is 4. Beyond this point, further increases in iteration numbers result
in a gradual decline in detection performance. The experiments indicate that the proposed algorithm
achieves the best detection results at four iterations. Moderately increasing the iteration number can
enhance the model’s detection performance, but excessive iterations may lead to a plateau or even a
slight decrease in performance. Selecting an appropriate number of iterations is crucial for optimizing
the model.

4.6 Runtime and Efficiency Comparison

To analyze the real-time performance of various algorithms in image crack segmentation, we con-
ducted segmentation time statistics for CNN [4], HED [20], VGG_19 [10], UNet++ [14], and our
algorithm on the self-built dataset, Crack500, and CFD datasets. The average value of the three
results was taken for comparative experiments. Additionally, we observed the frames processed per
second (FPS) and the peak speed per second (FLOPS). The experimental results are shown in Ta-
ble 7. From Table 6, it is evident that our algorithm leads with an average segmentation time of
0.09 seconds. In terms of FPS, our algorithm achieves 9.39, indicating good real-time performance.
The high efficiency in segmentation time is due to the encoder part quickly extracting multi-scale
features through multiple convolutional layers and dilated residual convolutions, expanding the recep-
tive field without increasing computational load. The high FPS is attributed to the efficient decoder
design, which rapidly restores image details through upsampling and deconvolution operations, re-
ducing processing latency. UNet++ follows closely, also demonstrating good real-time performance.
The other three algorithms are comparatively slower in processing speed. In terms of FLOPS, our
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Table 7: Comparison of Runtime and Efficiency of Different Algorithms
Algorithm Average Segmentation Time (s) FPS FLOPS
CNN 0.27 7.35 91.30
HED 0.21 8.43 112.32
VGG19 0.43 7.86 189.15
Unet++ 0.11 9.21 199.01
Our Algorithm 0.09 9.39 234.38

Table 8: Ablation Study Results
Algorithm ACC MPA MIoU Recall FPS FLOPS
VGG13 94.56 94.81 90.33 93.12 7.66 136.52
VGG+denoising 95.05 94.91 92.13 93.89 7.90 138.88
VGG+residual dilation+denoising 95.57 95.19 92.54 95.65 8.65 192.81
VGG+enhanced path+denoising 95.08 95.07 92.88 95.38 8.45 195.66
Our Algorithm 96.09 96.36 93.05 96.09 9.39 234.38

algorithm significantly outperforms the other four, achieving 234.38. This advantage stems from the
multi-scale residual dilated module and path enhancement module, which capture features at dif-
ferent scales through multi-scale convolution operations, thereby significantly increasing the FLOPS
value while maintaining high-quality segmentation images. The experiments demonstrate that our
algorithm finds a good balance between processing speed, computational efficiency, and segmentation
accuracy, making it suitable for various practical application scenarios. To further validate the supe-
riority of our proposed algorithm in image segmentation, ablation experiments were conducted on the
self-built dataset and the CFD dataset. We compared our algorithm with VGG13, VGG+denoising,
VGG+residual dilation+denoising, and VGG+enhanced path+denoising modules. The performance
was evaluated using ACC, accuracy, MPA, MIoU, and average segmentation time. The results are
shown in Table 8.

From Table 7, it is evident that our algorithm demonstrates superior effectiveness. By introducing
dilated residual modules and path enhancement modules into the VGG network for feature extraction,
our algorithm can capture more image details and complex crack features, thereby improving segmen-
tation accuracy. The use of deconvolution and upsampling in the decoder allows the restoration of the
original resolution of the image while retaining high-level feature information, ensuring the preserva-
tion and accurate segmentation of crack details. The filtering method helps smooth the image while
preserving and enhancing important details, which accounts for the superior performance in ACC,
MPA, MIoU, and Recall. In terms of average segmentation time and FPS, our algorithm demon-
strates a clear advantage in operational efficiency. Thanks to the efficient computational framework
of the algorithm, optimized process flow, parallel upsampling and deconvolution, and GPU accel-
eration, these technologies enhance processing speed and frame rate per second. The high FLOPS
data indicates the algorithm’s efficiency in floating-point operations per second, resulting from the
careful balance between computational complexity and execution efficiency in the algorithm’s design.
Through the reasonable design of the network structure and optimization of the computation process,
our algorithm achieves efficient image segmentation without sacrificing accuracy.

5 Conclusion
This study proposes an improved VGG-based neural network model for crack detection, featuring

dilated residual convolution and path enhancement integration. The experimental results indicate
significant improvements in crack segmentation accuracy and detail segmentation precision. Specif-
ically, fuzzy morphological filtering effectively reduces noise interference in input images, enhancing
crack detection accuracy. The introduction of dilated convolution and residual structures significantly
expands the network’s receptive field and strengthens feature extraction capabilities. The Path Aug-
mentation Module (PAM) enhances the network’s ability to express features at different scales and
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capture details through top-down feature transmission and multi-scale feature fusion. Validation on
the CDF, self-built, and Crack500 datasets demonstrates the algorithm’s notable advantages in detail
handling, segmentation accuracy, and efficiency. However, it is worth noting that the introduction of
dilated convolution and path enhancement modules increases overall computational load, particularly
when processing high-resolution images. Additionally, noise interference in complex backgrounds may
still affect detection accuracy, especially when the contrast between cracks and the background is low,
leading to false detections or missed detections. Future research will focus on optimizing lightweight
network structures, exploring the use of depthwise separable convolutions and pointwise convolutions
to reduce model parameters and computational complexity, thereby improving efficiency in high-
resolution image processing. Further exploration and validation of the algorithm in various domains
and scenarios, such as crack detection in bridges, tunnels, and roads, will expand its application range
and practical value. In conclusion, the proposed algorithm demonstrates significant advancements in
the field of image crack segmentation. With continuous refinement and optimization, this algorithm is
expected to exhibit strong practical applicability across various image segmentation tasks, promoting
the advancement and application of crack detection technology.
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