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Abstract

This paper considers the state-of-charge (SoC) estimation problem for Lithium-ion (Li-ion)
cells. An accurate SoC estimation is crucial in many aspects. Firstly, it prolongs battery lifespan
by preventing overcharging and overdischarging. Additionally, preventing overcharging, and hence
thermal runaway, averts any potential risk of fire or explosion in the battery systems. Understand-
ing the SoC enables the efficient utilization of a battery’s capacity, enhancing the performance of
the device or vehicle it powers. This is especially crucial for electric vehicles, where concerns about
driving range are prevalent. SoC estimation is frequently paired with state-of-health (SoH) esti-
mation to assess the battery’s overall condition. This combination aids in forecasting the battery’s
remaining lifespan and scheduling maintenance or replacement. In grid storage and renewable
energy systems, precise SoC estimation aids in balancing energy supply and demand, ensuring
dependable and efficient energy management. The above-mentioned discussion highlights the im-
portance of the study which is carried out in this work. The existing works in the literature mainly
use the extended Kalman filter (EKF) for the SoC estimation problem. It should be noted that the
performance of the EKF degrades as the system’s non-linearity increases. Moreover, the existing
battery management systems are complex and inherently involve high nonlinearities which further
extend as these systems are expanded. For these reasons, the EKF may lose its applicability for
applications demanding highly accurate SoC estimates. In this paper, therefore, we apply a more
accurate cubature-quadrature Kalman filter (CQKF) to estimate the SoC of the Li-ion cell. The
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SoC estimates provided by the CQKF are more accurate than those provided by the EKF. In this
regard, we first develop the completely observable equivalent circuit model (ECM) of a Li-ion cell
by experimentally identifying the parameters of the cell model. The experimental study is carried
out in a commercially available 2.5 Ah lithium iron phosphate (LFP) cell (A123 ANR26650M1-B).
Subsequently, we apply the cubature quadrature Kalman filter (CQKF) for estimating the SoC of
the considered Li-ion cell. We also perform a comparative analysis of the CQKF and the extended
Kalman filter (EKF) based SoC estimation for the considered model. We further extended the
analysis for the missing measurement case, where the actual measurement is intermittently lost
or does not contain sufficient information for the state measurement. The efficacy of the estima-
tion schemes is validated both experimentally and in simulation by computing several performance
indexes. The simulation results show that, compared with the EKF, the implementation of the
CQKF improves the SoC estimation accuracy significantly.

Keywords: Cubature quadrature Kalman filter, extended Kalman filter, lithium-ion cell, state
of charge estimation.

1 Introduction
Electric vehicle (EV) technology is gaining popularity as a result of its lower emissions compared

with internal combustion (IC) engine-based vehicles. EV technology is widely regarded as a viable
option for reducing global air pollution and carbon footprint. The energy source for EVs is battery.
Like conventional batteries, EV batteries are also made up of many single cells coupled in series or
parallel to meet the high energy and power demands. The cells are additionally constrained in their
operation by voltage, temperature, and current [1, 2]. Therefore, an EV necessitates a battery man-
agement system (BMS) to protect, monitor, and control the batteries. Among several key functions
of the BMS, one particular function, namely SoC estimation of the li-ion cell, is investigated in this
paper.

The SoC level of a Li-ion cell cannot be measured directly as it depends on the concentration of
lithium ions at the electrodes [3]. Furthermore, the unideal characteristics of the cells make the SoC
estimation of a complete battery pack difficult. In addition, noisy sensor measurements, temperature
and battery parameter fluctuations, battery aging, and the overall complicated and nonlinear behavior
of batteries are all challenges for accurate SoC estimation.

Generally, the SoC estimation is performed using current-based, voltage-based, and model-based
approaches [4]. Current-based approaches estimate SoC by using the ‘Coulomb counting’ equation,
which relates the current drawn from (or supplied to) the battery to its capacity. It is a reliable method
of calculating SoC. However, the knowledge of the initial SoC level is to determine the SoC at any
subsequent time instant, which is not always attainable. In voltage-based approaches, the relationship
between open-circuit voltage (OCV) and short-circuit current (SC) is used. The disadvantage is
that for the terminal voltage to achieve OCV, the battery must be properly relaxed. Model-based
estimation mathematically relates measurable signals (e.g., terminal voltage) to SoC. It is known
to provide accurate and precise estimates and incorporates elements of current and voltage-based
estimation techniques [5, 6].

Equivalent circuit models (ECM) use electrical components, such as resistors and capacitors to
simulate the electrochemical process of a cell. ECMs are commonly employed in model-based esti-
mation because of their improved accuracy with ease of implementation [7, 8, 9, 10]. In [11] and
[12], the authors suggest a composite ECM based on the Shepherd, Unnewher, and Nernst models.
Other models are also discussed, including zero-state hysteresis, one-state hysteresis, and enhanced
self-correcting (ESC) models. Adding resistor-capacitor (RC) branches to these models improves their
accuracy significantly. A comparison of twelve state-of-the-art lumped ECMs, as well as an examina-
tion of the model structure and parameter identification can be found in [13]. The second-order RC
model has been demonstrated to be the best model for estimating SoC, especially when significant
dynamic loads are present [14, 15].

As SoC cannot be directly approximated, the estimation process must rely on available noisy
measurements to rebuild the system’s internal states. Therefore, it becomes a problem of estimation
and filtering [16, 17]. For estimation, the Kalman filter (KF) is a popular mathematical tool that
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provides optimal estimates for the linear systems [18]. However, it suffers from poor accuracy for
nonlinear systems [19]. Since our problem is inherently nonlinear, it demands a filtering algorithm that
can handle the nonlinearities. Various nonlinear extensions of the KF are discussed in the literature
[20, 21]. The EKF is implemented in [11, 22] to estimate the SoC of the battery pack. However, the
complexity and nonlinearities of BMS are expected to increase considering the advancement in battery
technologies. It is well-known that the EKF performs with poor accuracy with increased nonlinearities.
Our main objective is to estimate the SoC more accurately. Therefore, we chose CQKF [23] because
of its improved accuracy. We compare the performance of the CQKF and EKF on the experimentally
identified ECM. The results show that the SoC estimation provided by the CQKF is more accurate
compared with the EKF.

Summarizing the above discussion, we now highlight the main contributions of the manuscript as
follows

• We address the problem of state-of-charge (SoC) estimation for the Lithium-ion cell, and choose
LiFePO4 as the test cell.

• We develop an equivalent circuit model by experimentally calculating parameters’ values.

• Subsequently, we propose a state-space model that imitates the dynamics of the considered cell.

• For the newly developed model, we apply the advanced Gaussian filter, i.e., cubature-quadrature
Kalman filter to estimate the SoC.

• We validate the improved performance of the proposed method by comparing it with the existing
extended Kalman filter-based SoC estimation method.

• We extended the comparison for missing measurement phenomenon.

2 Experimental setup
As illustrated in Fig. 1, the experimental setup comprises of the LiFePO4 (or LFP) cell to be

investigated and a PC-based Bitrode FTV storage device testing module. In this experiment, we use
A123 ANR26650M1-B and 2.5 Ah LFP cell. however, the actual capacity turned out to be 2.481 Ah.
In its low current and high current operating modes, the Bitrode FTV testing module can supply
currents up to 6 A and 100 A, respectively. The measurement for the terminal current and voltage
is taken with the sampling rate of 1 s while charging and discharging the cell in the low current
mode of the testing module. The current and voltage are measured with 1 mA and 1 mV precision,
respectively, using the testing module. All the tests are performed at room temperature ∼25°C. The
cell parameters are shown in Table 1.

Figure 1: Experimental setup.
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Table 1: LFP cell parameters
Parameters Value

Cell capacity 2.5/2.4 Ah
Nominal voltage 3.3 V

Upper cut off voltage 3.6 V
Lower cut off voltage 2 V

Cycle life at 20 A discharge >1000 cycles

2.1 Identifying OCV-SoC Relationship

The open-circuit voltage or OCV is the no-load voltage across battery terminals when the battery
has attained internal equilibrium. OCV normally increases monotonically as a nonlinear function of
SoC. OCV may also depend on cell temperature, but this effect is negligible compared to the effect of
SoC [24, 25].

For the given cell to obtain the OCV data, the cell is charged and discharged between the upper
cutoff voltage and lower cut-off voltage which in the present case is 3.6 V and 2 V respectively at
C/20 rate. Note that cells may follow different OCV-SoC curves during charging and discharging i.e.,
hysteresis as shown in Fig. 2, but the model considers only the averaged OCV curve shown in Fig. 3.
Additionally, the long-term aging of OCV is also neglected.

Figure 2: OCV-SoC curves during charging and discharging.

Different cell chemistry exhibit different OCV-SoC relationships, which may have a significant
impact on the SoC estimation accuracy. For the LFP cell considered in this work, the curve is found
to be flat from 20% to 90% SoC as shown in Fig. 3. Due to this flatness, a small variation in OCV
will correspond to a large variation in SoC, which implies that any small noise or disturbance in the
voltage measurement will have a large impact on SoC estimation. Hence, for an LFP cell, an accurate
and precise voltage measurement is critical.

The electro-chemical models for OCV behaviour in respect of SoC are as follows:

1. Shepherd Model
VT (t) = K0 − R0.I (t) + K1

z(t) . (1)

2. Unnewehr Universal Model

VT (t) = K0 − R0.I (t) + K2.z(t). (2)

3. Nernst model
VT (t) = K0 − R0.I (t) + K3ln (z (t)) + K4ln(1 − z(t)) . (3)
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Figure 3: Approximate OCV-SoC curve for LFP cell.

4. Combined Model

VT (t) = K0 − R0.I (t) + K1
z(t) + K2.z(t)

+ K3ln (z (t)) + K4ln(1 − z(t)) ,

(4)

where VOC (z(t)) = K0 + K1
z(t) + K2.z(t) + K3ln (z (t)) + K4ln(1 − z(t)) and, K0 = 3.552, K1 =

−0.00072, K2 = −0.2744, K3 = +0.1372, K4 = −0.03967.
Fig. 4 shows the fitted OCV-SoC curve for the LFP test cell using curve fitting tool in MATLAB

obtained from the approximated experimental curve shown in Fig. 3.

Figure 4: Approximate and Fitted OCV-SoC curve for LPF test cell.

3 State of Charge (SoC) Estimation
In this section, the SoC estimation algorithms are discussed. The discrete-time state space model

of the cell are rewritten in the form of

xk+1 = f (xk, uk)
yk+1 = g (xk+1, uk) ,

(5)
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Table 2: Identified parameter values.
Parameters Value

R0 15.788mΩ
R1 18.155mΩ
R2 26.196mΩ
C1 1304.6F

C2 96655F

where xk =
[

IR1 [k] IR2 [k] z [k]
]

is the state vector, yk = VT [k] is the measured terminal
voltage, uk = I[k] is the measured terminal current, and the functions f(·) and g(·) are the state
transition and measurement (or output) functions, respectively, and given by

f (xk, uk) =


e−∆t/τ1 .IR1 [k] +

(
1 − e−∆t/τ1

)
.I[k]

e−∆t/τ2 .IR2 [k] +
(
1 − e−∆t/τ2

)
.I[k]

z [k] − η∆t
3600.QI[k]

 . (6)

g (xk, uk) = VOC (z [k]) − R1.IR1 [k] − R2.IR2 [k] − R0I[k]. (7)

It is worth mentioning at this stage that manufacturing variability and deterioration of the cell
chemically and mechanically can potentially contribute to parametric uncertainty [26]. The CQKF is
expected to perform better than the EKF under such circumstances.

3.1 Extended Kalman Filter Algorithm

The EKF is a nonlinear extension of KF that handles the nonlinearities in the system model
by simply computing the Jacobian at each time step. The state-space equations of a discrete time
nonlinear system is given by:

xk+1 = f (xk, uk) + wk

yk+1 = g (xk+1, uk) + vk,
(8)

where wk and vk represents the process and measurement noises, respectively. Furthermore, it
is assumed that wk ∼ N (0, Σw,k ) and vk ∼ N (0, Σv,k ) are zero mean white Gaussian noises with
covariances Σw and Σv , respectively. Using first-order Taylor series expansion on f(·) and g(·) [11],
one can get:

f (xk, uk) = f
(
x̂+

k−1, uk

)
+ ∂f (xk, uk)

∂xk

∣∣∣∣
xk=x̂+

k−1

(
xk − x̂+

k−1

)
(9)

g (xk, uk) = g
(
x̂−

k , uk

)
+ ∂g (xk, uk)

∂xk

∣∣∣∣
xk=x̂−

k

(
xk − x̂−

k

)
, (10)

where Ak = ∂f(xk,uk)
∂xk

∣∣∣
xk=x̂+

k−1
and Ck = ∂g(xk,uk)

∂xk

∣∣∣
xk=x̂−

k

. For completeness of the presentation

and ease of understanding the summary of the EKF implementation algorithm is summarized below
sequentially in terms of the executable equations,

1. Initialization (to be executed only once):

x̂+
0 = E [x0] . (11)

Σ+
x̃,0=E

[(
x0 − x̂+

0

) (
x0 − x̂+

0

)T
]

. (12)

2. Prediction step:
A priori state estimation

x̂−
k = f

(
x̂+

k−1, uk−1
)

. (13)
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A priori error covariance matrix

Σx̃,k=Ak−1Σ+
x̃,k−1AT

k−1 + Σw . (14)

3. Correction step:
Kalman gain

Lk = Σ−
x̃,kCT

k

[
CkΣ−

x̃,kCT
k + Σv

]−1
. (15)

A posteriori state estimation

x̂+
k = x̂−

k +Lk

[
yk − g

(
x̂−

k , uk

)]
. (16)

A posteriori error covariance matrix

Σ+
x̃,k=(I − LkCk)Σx̃,k . (17)

The superscript ‘-’ indicates a priori estimate, while the superscript ‘+’ indicates a posteriori estimate.
x̂+

0 is initial state vector value given by [ 0 0 0.9 ], Σ+
x̃,0 is error covariance and it is initialized with

value diag
([

1e − 3 1e − 3 1e − 3
])

, Σw is process noise covariance and is initialized with value

diag
([

1e − 4 1e − 4 0.9e − 5
])

. Σv is measurement noise covariance and is initialized with value
2e − 2.

3.2 Cubature Quadrature Kalman Filter (CQKF)

In nonlinear systems, the intractable integrals appear during the filtering process. These integrals
can not be solved analytically, and require to be numerically approximated. The cubature Kalman
filter (CKF) [20, 21] uses spherical cubature rule to approximate these integrals. The CKF is further
generalized in CQKF [27] by increasing the order of Gauss-Laguerre approximation. The quadrature
rule’s order defines the accuracy of the CQKF. The higher the number of quadrature points, the more
accurate the result. However, 2nn′ support points and weights are needed for the CQKF filter of order
n′. Unlike the EKF, the CQKF is derivative free, thus no Jacobian matrix calculation is required.
The algorithm of the CQKF could be summarized sequentially as follows [27]:

1. Filter initialization

• Initialize the filter with x̂0|0 and P0|0.
• Calculate the CQ points, ξj , their corresponding weights wj (j = 1, 2, · · · , 2nn′).

2. Predictor Step

• Perform the Cholesky decomposition of posterior error covariance

Pk|k = Sk|kST
k|k. (18)

• Evaluate CQ points
Xj,k|k = Sk|kξj + x̂k|k. (19)

• Update CQ points
Xj,k+1|k = ∅(Xj,k|k). (20)

• Compute the time updated mean and covariance

x̂k+1|k =
2nn′∑
j=1

wjXj,k+1|k. (21)

Pk+1|k=
2nn′∑
j=1

wjXj,k+1|kXT
j,k+1|k − x̂k+1|kx̂T

k+1|k + Qk. (22)
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3. Measurement update

• Perform the Cholesky decomposition of prior error covariance

Pk+1|k = Sk+1|kST
k+1|k. (23)

• Evaluate the CQ points
Xj,k+1|k = Sk+1|kξj + x̂k+1|k. (24)

• Find the predicted measurements at each CQ points

Yj,k+1|k = γ
(
Xj,k+1|k

)
. (25)

• Estimate the predicted measurement

ŷk+1|k =
2nn′∑
j=1

wjYj,k+1|k. (26)

• Calculate the covariances

Pyk+1,yk+1 =
2nn′∑
j=1

wjYj,k+1|kYT
j,k+1|k − ŷk+1|kŷT

k+1|k + Rk. (27)

Pxk+1,yk+1 =
2nn′∑
j=1

wjXj,k+1|kYT
j,k+1|k − x̂k+1|kŷT

k+1|k. (28)

• Calculate Kalman gain
Kk+1 = Pxk+1,yk+1P−1

yk+1,yk+1
. (29)

• Compute the posterior state values

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − ŷk+1|k). (30)

• The posterior error covariance matrix is given by

Pk+1|k+1 = Pk+1|k − Kk+1Pyk+1,yk+1KT
k+1. (31)

4 Simulation and Results
In this section, the performance of the two estimation algorithms is presented and further illustrated

through simulation and experimental studies. A comparison between EKF and CQKF results is shown
in Figs. 5-7 when subjected to UDDS profile test. The results are generated with 3rd order quadrature
rule for CQKF. P0|0 error covariance and it is initialized with value diag([ 1e − 3 1e − 3 1e − 3 ]).
The values of Qk and Rk are selected as diag([e − 4 e − 4 0.9e − 5]) and 2e − 2, respectively. The
results are generated with 100 Monte-Carlo runs.

Fig. 5 shows the performance of the EKF and CQKF for SoC estimation on the UDDS profile and
as we can see CQKF performance is better as compared to EKF which can be confirmed from the
coefficient of determination (R2) from Table 3. Fig. 6 shows the absolute error for SoC estimation
and the mean absolute error for CQKF is less as compared that of EKF, which can be seen in Table
3. Fig. 7 shows the estimated output voltage performance of the EKF and CQKF which shows that
both the algorithms perform well for output estimation.

To further validate the model, Dynamic Stress Test (DST) is also performed on a battery in which
a series of discharge current pulses are applied to the cell under test at room temperature ∼25℃. Fig.
8 compares the performance of EKF and CQKF for estimating SoC on the DST profile, and we can
observe that the CQKF performs better than EKF, as evidenced by the coefficient of determination
(R2) in Table 3. Fig. 9 depicts the absolute error for SoC estimation, and the mean absolute error for
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Figure 5: SoC estimation performance of EKF and CQKF using UDDS profile.
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Figure 6: Absolute state estimation error of EKF and CQKF using UDDS profile.
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Figure 7: Output voltage performance of EKF and CQKF using UDDS profile.

Table 3: Analysis of SoC estimation for EKF and CQKF.
Filter Drive Cycle R2(−) MAE(%) RMSE(%)

EKF UDDS 0.9947 1.5984 2.0873
DST 0.9900 1.8624 2.7227

CQKF UDDS 0.9956 1.4982 1.9250
DST 0.9955 1.4756 1.8368

Table 4: Analysis of terminal voltage for EKF and CQKF.
Filter Drive Cycle R2(−) MAE(mV) RMSE(mV)

EKF UDDS 0.9184 8.7696 35.7395
DST 0.8876 8.5669 33.8187

CQKF UDDS 0.9073 10.8067 38.1114
DST 0.8784 10.0836 35.1800
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Figure 8: SoC estimation performance of EKF and CQKF using DST profile.
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Figure 9: Absolute state estimation error of EKF and CQKF using DST profile.
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Figure 10: Output voltage performance of the EKF and CQKF using DST profile.
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CQKF is lower than that for EKF, as shown in Table 3. The estimated output voltage performance of
the EKF and CQKF is shown in Fig. 10, demonstrating that both algorithms perform well for output
estimation.

To conduct the statistical analysis of the overall performance of two algorithms, a few performance
indices are shown in Table 3 and 4. The indices are calculated for both the model output and the
predicted SoC, with the former being compared to the measured voltage and the latter being compared
to the theoretical SoC computed using the coulomb counting technique [28].

It should be noted that the batteries inherently contain complex structure, which is often influenced
by various factors. In such complex environment, the received measurements are often corrupted.
Specifically, the measurement is not received for many time-instants or the received measurement
does not carry sufficient information for the state estimation. This phenomenon is called missing
measurement. The EKF and CQKF are incapable to handle the missing measurements phenomenon
in their conventional form. Therefore, these filtering algorithms are required to be rederived to handle
the missing measurements. Further, note that the measurement equation (Eq. (5)) does not include the
missing measurement phenomenon and is required to modified. The proposed measurement equation
incorporating the missing measurements possibility is given as

zk+1 = βg (xk+1, uk) , (32)

where zk+1 represents missing measurement and β is a Bernoulli random variable incorporating the
missing measurement possibilities: β = 1 represents that the measurement is received while β = 0
denotes that the corresponding measurement is lost.

Following the above discussion, we modified the EKF and the CQKF for Eq. (32) and compared
the different indices considered in the paper. It should be noted that the missing measurement
probability is not very high in general for any system. Subsequently, we consider that only 10% of
total measurement are lost for the system. Alternatively, the missing measurement probability is
considered as 0.1. Tables 5 and 6 compares the different indices for the modified CQKF and EKF,
which concludes that the modified CQKF for missing measurements performs better than the modified
EKF for the missing measurement.

Table 5: Analysis of SoC estimation for EKF and CQKF.
Filter Drive Cycle R2(−) MAE(%) RMSE(%)

EKF UDDS 0.9961 1.6548 2.2583
DST 0.9945 2.0024 2.7227

CQKF UDDS 0.9969 1.4225 2.0023
DST 0.9963 1.7531 2.1201

Table 6: Analysis of terminal voltage for EKF and CQKF.
Filter Drive Cycle R2(−) MAE(mV) RMSE(mV)

EKF UDDS 0.9244 11.1244 38.0012
DST 0.8964 10.9365 37.9855

CQKF UDDS 0.9165 10.8067 36.1278
DST 0.8998 10.0836 35.9856

In summary, the errors are less for the CQKF which concludes that the estimates provided by it
are more accurate compared to those provided by the EKF. The reason is that the CQKF is more
accurate filter than the EKF. As has been comprehensively discussed in Refs. [20, 21] that the EKF
handles the non-linearity by considering only the first order Taylor series expansion. Therefore, the
approximation poorly realizes the nonlinearities for highly nonlinear system. The CQKF, on the other
hand, more accurately realizes the nonlinearity by using the quadrature rule, which in turn improves
the filtering performance. Please refer to [20, 21] for a detail discussion on implementing the CQKF
and EKF filtering algorithms.



https://doi.org/10.15837/ijccc.2025.2.6896 12

5 Conclusion
The SoC estimation of Li-ion cells is crucial in EV technologies. The complexity and nonlinear-

ity are increasing in BMS. As the EKF algorithm could not handle the high parametric modeling
uncertainties, using proper initialization and tuning can give a good estimate result. In this work,
we implement the CQKF algorithm to handle high parametric uncertainty in BMS. Finally, the al-
gorithms were tested using a real dataset. From the simulation results, it can be concluded that the
CQKF outperforms EKF in the case of hard non-linearities and high parametric uncertainty. Con-
sidering the fact that EKF is simpler with fewer computational demands, the choice of estimation
algorithms should be based on the battery’s operating conditions. Also, it is better to obtain the
parameters of the battery using a real-time drive cycle, if the application of these battery cells will be
used in electric vehicles. For future work, the temperature effect on SoC estimation as well as aging
and capacity estimation can be considered.

It should be noted that the noises considered in the paper are zero-mean Gaussian distribution,
which holds for a range of practical battery systems. However, in certain battery systems, the noises
appearing in the system model may follow non-Gaussianity. In such cases, the state-space model of
the cell can be rederived to account for the non-Gaussian noises. Accordingly, the CQKF can be
reformulated, which in the present form is structured only for Gaussian noise. It leaves a space for a
promising future research direction.
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