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Abstract

Years of studies have consistently demonstrated that people’s capacity to detect deceit is no
better than chance. For law enforcement officers, accurate deception detection is critical. The
traditional polygraph examination is now the sole standardized and reliable method for detecting
deceit. There are several standardized scoring protocols (Lafayette Polygraph System 11.8.6) to
Control Question Technique (CQT) Polygraph examinations: PolyScore, OSS-2, OSS-3 and man-
ually scoring. Due to the ongoing controversy over which scoring system performs better in terms
of avoiding false positive and false negative errors, this study introduces a Multilayer Perceptron
Neural Network (MLP) prediction approach to Polygraph deception scoring utilizing manually
scored examination data. A MLP was trained to predict high and low deception scores in 400
offender data, based on the most predictive psychophysiological indicators found in the scientific
literature: amplitude of electrodermal reaction (ARED), amplitude of blood pressure in brachial
pulse (ATAB), change of base line level in chest breathing (MNBRT) and difference of altitude
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between breathing cycles (DIFA). The model predicted the deception level of the 400 offenders
with a correct classification rate (CCR) of 80%, result consistent with the prediction accuracy re-
ported in the recent literature. The MLP neural network modeling results showed that based on
the four psychophysiological indicators ARED, ATAB, MNBRT and DIFA there is an 80% correct
classification rate of high and low deception scores received by insincere subjects. The key outcome
of this study suggests that MLP represents a robust approach to identify deception in manually
scored polygraph examinations.

Keywords: Polygraph, scoring system, Multilayer Perceptron Neural Network (MLP), decep-
tion detection.

1 Introduction
This paper presents a novel approach using a Multilayer Perceptron (MLP) Neural Network for the

prediction of deception scores in polygraph examinations, in line with the journal’s focus on Artificial
Intelligence, specifically deep learning, and the integration of advanced computational methods in
various applications. In many fields, deception detection accuracy and dependability are crucial,
especially in law enforcement, where conventional polygraph techniques are still widely used despite
continuous discussions over their efficacy. According to the journal’s focus on deep learning, this
use of MLP illustrates how artificial intelligence might improve the predicted accuracy of intricate
psychophysiological tests.

Artificial intelligence has been shown to be effective in maximizing predictive accuracy and improv-
ing the dependability of computational systems in a variety of domains, including real-time intelligence
systems and QoS prediction, according to recent studies by Wahsheh et al. (2021) and Albu et al.
(2014). In a similar vein, the current study uses an MLP neural network to train the model on impor-
tant psychophysiological signs in order to solve the difficulties associated with evaluating polygraph
deception. The examination data is manually scored. According to Prepeau et al. (2017), this strategy
will contribute to the advancement of cutting-edge AI applications, especially deep learning, which
will boost the efficiency of computational systems in real-world situations (Sinescu et al., 2009; Toader
et al., 2023).

It’s a popular belief in today’s society that one can tell someone is honest simply by looking at
them. Physical cues are not always dependable markers of dishonesty, despite the fact that they
might provide some insight into someone’s emotional condition. As a result, novel technologies—like
artificial intelligence-based lie detectors—have been developed with the intention of more accurately
identifying dishonesty.

Artificial intelligence (AI)-based lie detectors are more useful in large-scale scenarios like airport
security checks and employment candidate assessments because of their many benefits, including speed
and ease of administration. Additionally, these systems can be configured to pick up on minute physio-
logical alterations that the human eye or conventional polygraph machines could miss. Notwithstand-
ing these advantages, questions concerning the precision and dependability of AI-based lie detectors
still exist. Although supporters contend that they are more accurate than conventional polygraph
examinations, experts are still debating the veracity of these assertions. While some academics are
concerned about the possibility of prejudice and discrimination in their use, others wonder if these
systems are indeed successful at detecting deceit.

However, the field of deceit detection has advanced significantly with the creation of AI-based
lie detectors. Future technological advancements are certain, hence it is imperative that scholars and
decision-makers carefully consider the ethical and factual ramifications of these cutting-edge inventions.
Because AI-based lie detectors can be utilized in situations where traditional polygraph examinations
are impractical, they have become more and more popular in recent years. Because of the technology’s
apparent modernity and complexity, these systems are being utilized more frequently, for instance, in
private job interviews, border crossings, loan checks, and insurance fraud claims, among other contexts
(Wang, Shi & Liu, 2021).

These technologies are being widely adopted by businesses and governments to evaluate the reli-
ability of customers, employees, locals, immigrants, and international guests. Applications for visas,
employment screening, security clearance evaluations, and other situations have all made use of these
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systems (Giansiracusa, 2021; Sánchez-Monedero & Dencik, 2022; Oravec, 2022; Brouwer, 2021; Elkins,
Gupte & Cameron, 2019). Customization to meet the requirements of various applications is one ben-
efit of AI-based lie detectors. For instance, some systems might be made to examine spoken answers
to inquiries, while others might be more concerned with examining physiological reactions like skin
conductance or pulse rate. Furthermore, such algorithms might be designed to identify particular
linguistic or behavioral patterns linked to dishonesty.

These technologies have advantages, but there are also questions regarding their validity and
dependability. Opponents of AI-based lie detectors contend that its accuracy might not be high enough
to justify their application in critical decision-making scenarios, like immigration and employment
screening. Concerns about privacy and the security of personal data are present, in addition to possible
bias in the creation and application of these technologies. Polygraph techniques are employed not just
in criminal investigations but also extrajudicially to assess an individual’s integrity and dependability.
One well-known example is the use of polygraph tests in some companies’ hiring procedures for new
hires.

One of the first studies to investigate the use of polygraph testing in pre-employment screening
was Ash (1971), and his results implied that the test might reliably identify candidates who were
likely to act dishonestly. In a similar vein, Nagle (1983) discovered that polygraph examinations were
an effective means of vetting candidates for high-security jobs. Cunningham (1989) looked into the
aviation industry’s use of polygraph testing and discovered that it may be useful in identifying people
who were a security concern. Zafran and Stickle (1984) also documented the effective application of
polygraph examinations in federal law enforcement agencies’ hiring procedures. More recently, Nevins
(2004) investigated the application of polygraph testing in the financial sector and discovered that it
would be a useful method for detecting people who were a risk to the company.

From the first concepts of polygraph testing, modern deception detection systems have advanced to
include more complex data analysis and machine learning algorithms. However, experts and practition-
ers have disagreed over how accurate these technologies are. Research has indicated that conventional
methods of detecting dishonesty, like the original polygraph concept and the polygraph itself, are
not entirely accurate. Slowik (2013) and Matte (1996) discovered that the polygraph’s accuracy was
barely superior to random chance. Raskin (1987) and Cross and Saxe (1993) both noted low poly-
graph accuracy rates. Matte (2007) and Horvath (2020) discovered that the subjective interpretations
of polygraph charts by examiners were not trustworthy. Furthermore, Slowik (2020) and Lapadusi
and Dobreanu (2014) discovered that the polygraph’s accuracy dropped when applied to real-world
situations.

Gordon (2016) investigated whether computational text analysis could identify dishonesty at ac-
curacy rates that were on par with human experts. In a meta-analysis of forty research on the
polygraph’s accuracy, Raskin and Kircher (2014) discovered that the test’s ability to identify deceit
was just marginally superior to chance. Nelson (2015) also examined the research on the polygraph
and came to the conclusion that its validity and accuracy were constrained. More recently, Raskin et
al. (2019) discovered that a machine learning algorithm performed better than a standard polygraph
test in their study comparing the accuracy of the two methods. The possibility of machine learning
algorithms for deception detection was also investigated by Widacki (2020), who discovered that these
systems could identify dishonesty with great accuracy.

Machine learning algorithms have the potential to increase accuracy, according to recent study,
but further studies are required to completely assess their efficacy in practical contexts. Future re-
search on deceit detection appears to be headed in a promising route with the application of machine
learning algorithms and extensive data analysis. Accuracy improvements appear possible thanks to
recent advancements in machine learning algorithms and complicated data processing. In controlled
laboratory settings, machine learning systems were found to be able to accurately identify dishonesty
by Gordon et al. (2006) and Bhutta et al. (2015). In addition, O’Shea et al. (2018) found that a ma-
chine learning method produced high accuracy rates when used in real-world situations. Furthermore,
Oswald (2020) and Raskin, Kircher, and Honts (2019) discovered that machine learning algorithms
could raise the precision of conventional polygraph testing.

In conclusion, current advancements in complicated data analysis and machine learning algorithms
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have showed promise in enhancing accuracy, even while old deception detection tools have proven to
be unreliable. Nevertheless, more investigation is required to properly assess these new technologies’
efficacy in practical contexts.

2 Materials and Methods

2.1 Participants

The 400 participants were chosen at random from a group of 1072 dishonest individuals who
had committed several offenses and have been evaluated with Polygraph test by expert polygraph
examinators from 10 polygraph laboratories of the Romanian Police, coordinated by Dr. Csaba Kiss.
All 400 participants are criminals who have committed serious crimes on a recidivist basis and all
confessed their crimes and gave their consent that their aggregated data to be used in scientific
research. The information that was used in the present research was gathered from a minimum of
three diagrams related to each test performed during the Polygraph assessment. The investigated
individuals were 90% men and 10% women, with an age span between 18 and 65 years old and an
average age of 32 years. The mean length of finalized educational studies was and 8.6 years, a rather
low level of education.

2.2 Measures

The method employed in this study is forensic psychophysiology examination, commonly known
as polygraph testing, conducted over a three-year period from 2004 to 2007. These examinations were
carried out in 10 polygraph laboratories within the Romanian Police, staffed by polygraph examiners
with nearly equal levels of seniority (one staff member joined in 1998, eight in 1999, and one in 2000).
The polygraph method is non-intrusive and adheres to the principles of personal integrity and the
presumption of innocence.

Two families of polygraph techniques were utilized: the Modified General Question Technique
(MGQT) and the Air Force Modified General Question Test (MGQT-AIR FORCE). These techniques
are derived from various modifications of the General Question Technique and the Zone Comparison
Technique (Backster, 1963). Both MGQT and MGQT-AIR FORCE tests were administered following
all the stages of a polygraph examination, including numerical scoring, a 7-step scale, and OSS scale,
all evaluated manually.

Physiological arousal factors, including heart rate, blood pressure, respiration, sweat, and skin con-
ductivity, are measured by MGQT and MGQT-AIR FORCE. The fundamental idea behind polygraph
testing is that when a subject is telling the truth as opposed to lying, these physiological reactions
will change.

The list of the 22 parameters and their descriptive statistics are presented in table 1.
The ground-truth data for this study was established based on offenders’ confessions obtained

during the posttest interviews following all polygraph examinations. These confessions provide a
reliable baseline for validating the results of the neural network model.

2.3 Procedures

After reviewing the scientific literature, we concluded that the level of deception score in manual
Polygraph examinations scoring systems and not only, is highly predicted by the following indicators:
amplitude of electrodermal reaction (ARED), amplitude of blood pressure in brachial pulse (ATAB),
change of base line level in chest breathing (MNBRT) and difference of altitude between breathing
cycles (DIFA) (Cook & Mitschow, 2019). A strong theoretical basis and empirical support are provided
for our investigation by the general applicability and standardization of manual expert scoring (Gogate,
Adeel & Hussain, 2017; Pérez-Rosas et al., 2015).

The novelty of our approach is that there has never been reported a study that employs NN
algorithms to estimate the deception scores in polygraph testing.
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N Minimum Maximum Mean Std. Deviation
ARED 400 .00 20.80 6.4430 4.14712
ATAB 400 .00 14.70 2.9280 1.98674
ATAD 400 .00 18.00 .8063 1.68062
ART 400 .00 6.40 1.7180 .89928
ARA 400 .00 6.60 1.8945 .97460
MNBRA 400 .00 6.20 .2845 .55274
MNBRT 400 .00 8.10 .2902 .63592
IR 400 .00 1.54 .5672 .25061
LLRT 400 128.00 1184.00 379.3050 148.84446
LLRA 400 176.00 1480.00 442.2675 205.29060
LRED 400 76.00 1440.00 329.0175 205.23037
TRED 400 .00 87.00 13.7027 5.48503
TTAB 400 .00 37.00 11.9035 5.36883
TTAD 400 .00 24.60 4.2175 4.32322
RR 400 .00 32.00 18.5505 4.49283
RC 400 36.00 152.00 84.7300 16.39020
TSTOPR 400 .00 20.00 1.2515 3.19617
TSTOPRA 400 .00 20.00 1.2295 3.13461
REV 400 .00 1.00 .0975 .29701
EDA 400 63.00 886.00 169.6400 89.67393
DIFA 400 .00 19.00 .9867 1.47295
TDIFA 400 .00 27.30 8.0985 6.27655
Valid N (listwise) 400

Table 1: Descriptive statistics of the 22 physiological parameters

The current research uses a Multilayer Perceptron (MLP) modeling technique to predict the level of
deception scores (high deception and low deception) of offenders obtained by manual scoring diagrams,
based on recognized parameters the amplitude of the electrodermal reaction (ARED), amplitude of
blood pressure in brachial pulse (ATAB), change of base line level in chest breathing (MNBRT), and
difference of altitude between breathing cycles (DIFA). This research was motivated by the demand
for technology integration into psychological examinations like Polygraph examinations that are using
psychophysiological measurements.

The choosing of these particular 4 physiological parameters: amplitude of electrodermal reaction
(ARED), amplitude of blood pressure in brachial pulse (ATAB), change of base line level in chest
breathing (MNBRT) and difference of altitude between breathing cycles (DIFA) was decided upon the
results of a multiple linear regression analysis of all physiological parameters included in this inves-
tigation: DIFA, the duration of the electrodermal reaction (TRED), ARED, abdominal breath line
length (LLRA), arterial tension amplitude of the distal pulse (ATAD), heart rhythm (RC), voluntary
repeated acts (REV), duration of brachial pulse arterial tension (TTAB), changing of the basic level
of abdominal breathing (MNBRA), the ratio of inspiration to expiration (I/E), the average value of
the electrodermal reaction (EDA), thoracic breath line length (LLRT), reactive patterns (PATTR),
duration of distal pulse arterial tension (TTAD), ATAB, respiratory rhythm (RR), erratic breathing
(RE), abdominal respiratory stop (TSTOPRA), average amplitude of abdominal breathing (ARA),
the length of the electrodermal reaction (LRED), MNBRT, and thoracic respiratory stop (TSTOPR).

All 22 physiological parameters accounted for 28% variance in the brut expert score which ranged
from −1 to −2, as in the standard manual scoring procedure, with an F = 8.055 at p < 0.01. The
standardized Beta coefficients that obtained significance level of p < 0.01 were: ARED (Beta =
−.203, p < 0.01), ATAB (Beta = −.256, p < 0.01), MNBRT (Beta = −.135, p < 0.05), and DIFA
(Beta = −.168, p < 0.05). An additional parameter PATTR has obtained significant predictive level
(Beta = −.186, p < 0.01), but it was discarded from the neural network predictive analysis due to the
fact that reactive patterns were registered with only 3 values: 0, 1 and 2, being a coded parameter
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that was not directly measured. The Beta coefficients have negative loadings due to the fact that the
expert score is negatively registered, being a deception score, according to the standardized scoring
procedure. The expert score was further processed into 2 distinct categories, 1 for low deception scores
including brut expert scores from -1 to -5 (frequencies representing a cumulative 52% of total data)
and high deception scores ranging from -6 to -9 (frequencies representing a cumulative 48% of total
data).

Predictor variables are continuous variables with the following descriptive statistics: for ARED
scores ranged from 0 to 20.80, with a mean of 6.44 and a standard deviation of 4.14; for ATAB, scores
ranged from 0 to 14.70, with a mean of 2.92 and a standard deviation of 1.98; for MNBRT, scores
ranged from 0 to 8.10, with a mean of 0.29 and a standard deviation of 0.63, and for DIFA, scores
ranged from 0 to 19.00, with a mean of 0.98 and a standard deviation of 1.47. The dependent variable,
or the output variable in the neural network algorithm is represented by manual expert scores that
was coded with 1 for low deception and 2 for high deception, all subjects in this research are insincere
subjects, with offending background.

Due to the continuing advancement of artificial intelligence and advanced algorithms, data-driven
methodologies have become more and more adopted as a successful modeling tool in recent years
(Popescu et al., 2009; Rad et al., 2022). The Multilayer Perceptron MLP is often utilized due to
its straightforward construction and exceptional capability for function approximation (Marouf et al.,
2019). One or more layers of neurons make up a multilayer perceptron, a type of neural network.
Predictions are created on the output layer, often referred to as the visible layer, after data is received
from the input layer and abstracted to varying degrees by one or more hidden layers. MLPs are excel-
lent for classification prediction problems using labeled inputs. They are also suitable for regression
prediction problems where a real-valued quantity must be predicted given a collection of inputs.

A particular kind of feedforward artificial neural network is called a multilayer perceptron (MLP).
The MLP consists of a signal-receiving input layer, a decision-making output layer, and an arbitrary
number of hidden layers that act as the MLP’s true computational engine. In the perceptron, learn-
ing occurs by changing connection weights based on the degree of error in the output relative to the
expected result after each piece of input is processed. In this example of supervised learning, back-
propagation, an extension of the least mean squares method, is employed. Any continuous function
may be approximated by MLPs with a single hidden layer. Frequently, multilayer perceptrons are em-
ployed to address supervised learning problems. They learn to model the correlations or dependencies
between those inputs and outcomes by practicing on a variety of input-output combinations. In order
to improve accuracy, training requires changing the model’s parameters, or weights and biases. The
weight and bias adjustments are made via backpropagation in proportion to the error, which may be
measured in a number of different ways, including root mean squared error (RMSE).

We used an MLP neural network strategy to forecast the amount of deception scores (high decep-
tion and low deception) of 400 offenders, in terms of proper classification, as opposed to the traditional
multiple linear regression statistical processing of data. The following research topic is the specific
subject of this study: Using only the four psychophysiological measurements ARED, ATAB, MN-
BRT and DIFA, is the MLP neuronal network modeling approach a reliable prediction technique for
deception scores?

The measurements were standardized in the sense that the adjustment buttons were positioned
at the beginning of the measurements next to the same values for each route and subject evaluated.
Examinations and evaluations were performed after each device was calibrated with a calibrator and
the screen of each computer was also calibrated to avoid any distortion generated by the device.

Apparatus and software LX 4000 type devices were used, each equipped with 2 pneumograph
tubes, a galvanometer, a plethysmograph and a blood pressure sleeve. Also, the software used was
LX 9.9.5 which incorporates the Calipers section useful for accurate measurements. The most intense
physiological answers recorded to a single relevant question of each examination were selected. The
comparison questions associated with them were also used to establish the expert scores (by numerical
scoring). The measurements were performed in compliance with the rules established by the APA
(American Polygraph Association) at intervals of at least 25 seconds. Following the completion of the
data extraction, we built a database in SPSS V.26 and utilized its MLP feature to predict criminal
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offenders’ high and low deception scores using NNs modeling.

3 Results
MLPs are the most fundamental deep neural network models, consisting of a succession of fully

linked layers. We have further employed MLP machine learning to overcome the requirement of
high computing power required by modern deep learning architectures for the prediction of the level
of deception in criminal offenders that confessed their crimes, based on only 4 parameters ARED,
ATAB, MNBRT and DIFA out of 22 parameters described in the procedures subsection.

In order to employ the MLP technique, we have used the path Analyze/Neural Networks/Multilayer
Perceptron in SPSS V.26 program. In this study, we used a typical multiple-input, single-output MLP.
We have proceeded with designing the architecture as follows. First, we have selected the dependent
variable as expert score, then the 4 parameters: ARED, ATAB, MNBRT and DIFA were selected in
the covariates section. We have chosen the standardization method for rescaling of covariates. In the
partition section, we have chosen to randomly assign cases based on relative number of cases: 70%
training and 30% testing, with no partitioning variable to assign cases. Thus, out of a total of 400
instances, 281 cases (or 70.3 percent) were assigned to the training sample, while 119 cases (or 29.7
percent) were assigned to the testing sample. ARED, ATAB, MNBRT and DIFA are four independent
variables that are covariates in the network information output.

The goal of designing our MLP neural network was to maximize performance, minimize compu-
tational resources during training, maximize the level of automaticity by minimizing the number of
decisions that need to be made by a human during the design process, and to minimize the model’s
complexity, specifically the network’s size. As a result, we have chosen automatic architecture selec-
tion. As a result, the automated architecture design option suggested using the tangent hyperbolic
(tanh) function for hidden layer activation and the Softmax function for output layer activation. The
only non-linear activation functions for the hidden layer in SPSS v.26 are tangent hyperbolic (tanh)
and sigmoid. The tanh (tangent hyperbolic) function’s output always varies between -1 and +1, and
it, like the sigmoid function, displays an s-shaped graph, indicating a non-linear function. One advan-
tage of utilizing the tanh function over the sigmoid function is that it is zero centered, which makes
optimization much easier. SPSS V.26 has four alternative types of output layer default activation
functions: identity, softmax, tanh, and sigmoid. The input layer only stores the input data and does
not perform any calculations. As a result, no activation function was employed. To forecast a multi-
nomial probability distribution, the softmax function was employed as the activation function in the
MLP model’s output layer.

Figure 1 shows the MLP architecture with all the layers mentioned previously.
In the model summary, we discovered a cross entropy error of 127.437 and a training sample

percentage of inaccurate predictions of 21%. A cross entropy error of 55.891 and a percentage of
inaccurate predictions of 20.2% were found in the testing sample. Thus, 80% of the categorized data
are appropriately allocated to the dependent variable’s expert score value, which is a considerable rate
of accurate predictions in the testing sample. A comparison of the suggested MLP neural network-
based approach’s performance to the 82 percent prediction accuracy reported in previous literature has
yielded similar results (Gogate et al., 2017). Additionally, we show the correct classification percentage
for each data point in the training and testing samples in Table 2. With an overall accurate percent
of 79 percent, data point 2 (high deception) had the lowest correct percent in the training sample, at
46.8 percent. With an overall accurate percent of 79.8 percent, data point 2 (high deception) in the
testing sample had the lowest correct percent, at 51.4 percent. As evidence of the effectiveness of our
MLP classification model, the anticipated pseudo-probability, sensitivity-specificity, cumulative gain,
and lift chart outputs are shown in Figure ??.

We also discuss the performance of our model in terms of the gain/lift analysis, which helps to
select the best predictive model among several competing models. To evaluate the effectiveness of a
classification model, gain and lift charts are utilized. They evaluate how much better a person could
expect to do in the absence of a prediction model. The slope shown in Figure 2 gradually decreases
as the number of records that truly belong to the class of interest to add decreases and the model’s
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Figure 1: The MLP neural network architecture

C
Sample Observed 1 2 Percent Correct
Training 1 (expert score – low deception) 185 17 91.6%

2 (expert score high deception) 42 37 46.8%
Overall Percent 80.8% 19.2% 79.0%

Testing 1 (expert score – low deception) 77 7 91.7%
2 (expert score high deception) 17 18 51.4%
Overall Percent 79.0% 21.0% 79.8%

Dependent Variable: expert score (low deception – 1, high deception – 2)

Table 2: Classification
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Figure 2: Pseudo-probability, sensitivity-specificity, cumulative gain, and lift chart outputs for De-
pendent Variable: expert score (low deception – 1, high deception – 2)

ability to provide an advantage decrease, as indicated by the lift chart. Our MLP works effectively,
producing a notable "lift" for a sizable portion of the ranking data. When applying the MLP model,
the area under the curve (AUC) value exhibits great overall performance. We received a score of 0.81
for data point 1 (low deception scores) and the same value (0.81) for data point 2 (high deception
scores). An AUC of 0.5 often indicates no discrimination, whereas values between 0.7 and 0.8 are
regarded as good, between 0.8 and 0.9 as excellent, and values beyond 0.9 as remarkable.

Importance Normalized Importance
ARED .185 54.4%
ATAB .340 100.0%
MNBRT .140 41.3%
DIFA .335 98.7%

Table 3: Independent variable importance

The importance score in table 3 and figure 3 indicates the contribution of each variable to the
model’s overall accuracy in predicting the dependent variable. In this case, the variable with the
highest importance score is ATAB (0.340), followed by DIFA (0.335), ARED (0.185), and MNBRT
(0.140). The normalized importance score expresses each variable’s importance relative to the most
important variable (in this case, ATAB), which is assigned a value of 100%. According to this metric,
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Figure 3: Independent variable importance.

ATAB accounts for 100% of the model’s predictive power, while DIFA accounts for 98.7%, ARED for
54.4%, and MNBRT for 41.3%.

Overall, these results suggest that ATAB is the most important variable in predicting the dependent
variable, followed closely by DIFA, ARED and MNBRT appear to have relatively less influence on the
model’s predictive accuracy

Predicted: Low Deception Predicted: High Deception
Actual: Low Deception 185 17
Actual: High Deception 42 37

Table 4: Confusion matrix

The confusion matrix presented in Table 4 provides a detailed evaluation of the performance of
the Multilayer Perceptron (MLP) model by comparing actual deception scores to predicted deception
scores. It reveals that the model correctly predicted low deception in 185 cases (true positives) and
high deception in 37 cases (true negatives). However, it incorrectly predicted low deception in 42 high
deception cases (false positives) and high deception in 17 low deception cases (false negatives). Based
on the confusion matrix, the model’s overall accuracy is 79%, meaning it correctly predicts deception
scores in 79% of cases. The precision, or the proportion of true positive predictions for low deception,
is 81.5%, indicating that when the model predicts low deception, it is correct 81.5% of the time. The
recall (sensitivity), representing the proportion of actual low deception cases correctly identified, is
91.6%, showing that the model accurately detects 91.6% of all low deception cases. In contrast, the
model’s specificity, or ability to correctly identify high deception, is 46.8%, meaning it struggles more
with detecting high deception cases. The F1 Score, a balance between precision and recall, is 86.2%,
indicating that the model performs well in balancing these two aspects. Overall, the model is highly
effective at detecting low deception but requires improvement in identifying high deception cases.

4 Discussion
This study involves an early assessment and analysis of polygraph data. We obtained accuracy rates

that were comparable to those reported by other algorithms and manual scoring using a reasonably
straightforward procedure. The fact that we are able to construct a broad variety of alternative
models that take a variety of parameters into consideration while producing identical findings shows
how complex the evaluation and/or categorization of examinee dishonesty is.
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Providing precise and statistically sound classification systems with low false positive and false
negative rates is the aim of automated scoring algorithms for polygraph data. Numerous research
published in the polygraph literature starting in the 1970s asserted to show the efficacy of automated
categorizing methods and algorithms for assessing polygraph charts. Dollins, Kraphol and Dutton
(2000) claim that when inconclusive data are included, the accuracy of five different computer algo-
rithms on dishonest people ranges from 73 percent to 89 percent, and from 91 percent to 98 percent
when they are deleted.

Our results demonstrate that 80% of the categorized data are appropriately allocated to the de-
pendent variable’s expert score value, which represents a considerable rate of accurate predictions in
the testing sample. A comparison of the performance of the proposed MLP neural network-based
technique to the 82 percent prediction accuracy reported in earlier research showed similar results
(Gogate et al., 2017). The scientific literature on the subject of polygraph scoring technique also
supports the conclusion that ATAB is the most significant predictor of the Polygraph score (Pasca,
2012; Saeed et al., 2022).

The main limitation of our research is represented by the scarcity of nondeception examples, which
is one likely explanation for the acceptable classification performance.

Another limitation may be the high degree of variability and measurement errors found in real-
world polygraph data when there are inadequate standards for data collection and recording. The
problems with question inconsistencies, answer variability within and between people, and potential
learning effects are shown by our exploratory data analysis. It is not always obvious where variations
in answers occur, whether we are dealing with habituation or comparing semantically distinct items
throughout the charts. In our method, we have averaged the relevant and control replies and then
looked at their difference because our data queries are semantically diverse and no consistent ordering
inside and across charts could be built. The methods employed by OSS and PolyScore take a similar
approach.

This work has the potential to be reinterpreted and expanded in a variety of ways. More charac-
teristics might be retrieved and investigated. So far, these efforts have not resulted in considerably
lower mistakes, raising the issue of how far this strategy may go beyond what has previously been
documented. The order of the questions needs to be taken into account. A mixed-effects model with
repeated measures, where the repetitions would be measurements over many charts, is an additional
choice.

For either single occurrences or security screening, it has not yet been able to conduct a fully inde-
pendent examination of computer scoring systems on a large enough sample of instances to allow one
to safely assess the validity and accuracy of these algorithms. One might contend that neural network
algorithms should be better at data analysis since they are capable of tasks that even experienced
examiners find difficult, such as filtering, transformation, computing signal derivatives, manipulat-
ing signals, and looking at the big picture rather than just adjacent comparisons. Our results bring
promising evidence for a future MLP neural network scoring feature integration into the standardized
Polygraph scoring systems, especially needed in cases of diagnostic impossibility, thus assisting clinical
scoring of polygraph diagrams when there is an impossibility assessment offered by current scoring
systems OSS and Polyscore.

However, the effectiveness of both numerical and electronic methods is still significantly dependent
on the examination’s pre-test phase. The quality of information recorded is inextricably linked to
how effectively examiners design the questions (Walczyket et al., 2013). The eventual potential of
computerized scoring systems depends on both the consistency of the test formats that the systems
are designed to handle and the quality of data that is available for system development and imple-
mentation. We believe there is space for significant modifications to be made to the current numerical
scoring.

Traditional lie detection methods focus on behavioral or psychophysiological signs of dishonesty,
such as the polygraph, voice stress analysis, or specific interrogation techniques The issue of whether
it would be able to directly recognize deception in the area of the body where it is generated—the
brain—arose with the development of neuroimaging technology. Unfortunately, much of the research
in this area was relatively arbitrary and ignored the body of information regarding methodological
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traps that were hotly debated in the scientific community in relation to the polygraph (Bashore &
Rapp, 1993).

Because of this, there are significant differences across neuroimaging research on deception in
terms of the experimental paradigm (the interrogation technique), the data analysis techniques, and
the methodologies used to make individual diagnoses. Additionally, the majority of research made
use of fabricated laboratory conditions that are very unlike from real-world applications. As a result,
neuroimaging methods are not currently useful for identifying dishonesty in specific field scenarios.
However, new developments like multivariate pattern analysis may soon result in fresh neuroimaging
applications that can enhance current methods for spotting dishonesty or hidden information (Gamer,
2014; Lo, Fook-Chong & Tan, 2003).

The investigation of the phenomena of self-deception and lying could benefit from further research
using screening tests or standardized laboratory situations. These methods ensure that questions are
asked in the same sequence and vary only slightly between individuals and charts. Additionally, future
studies should consider the use of electroencephalography (EEG) brain mapping techniques to add
a rigorous measurement dimension to the psychophysiological measurements in classical polygraph
measurements.

EEG brain mapping refers to a collection of separate techniques for quantified EEG analysis that
measure the electrical activity of the brain (Nuwer, 1990a; Nuwer, 1990b). These techniques provide a
more objective way to measure physiological responses related to deception and self-deception (Cook
& Mitschow, 2019; Happel, 2005). For instance, researchers can analyze changes in brain waves or
neural activity when individuals engage in deceptive behavior, which can provide insight into the
cognitive processes involved in lying (Arasteh, Moradi & Janghorbani, 2016; Bhuvaneswari & Kumar,
2015).

Several studies have utilized EEG brain mapping techniques to investigate deception and self-
deception. Meijer and Verschuere (2017) used EEG to examine brain activity during deception and
found that the brain’s prefrontal cortex was more active when participants were lying compared to
telling the truth. Gamer (2014) also found that lying was associated with increased activity in the
prefrontal cortex, particularly in regions involved in cognitive control and decision-making. Other
studies have focused on identifying specific EEG markers that can reliably indicate when someone
is lying. Kohan, Nasrabadi, and Shamsollahi (2020) developed a new algorithm that analyzed EEG
signals to detect deception with high accuracy. Lakshan et al. (2019) used EEG to identify differences
in brain activity between deceptive and truthful responses in a mock crime scenario.

In addition to investigating deception, EEG brain mapping techniques can also shed light on the
mechanisms underlying self-deception. EEG was utilized by Nortje and Tredoux (2019) to investigate
the connection between cognitive dissonance and self-deception. Researchers discovered that those
who self-deceived had lower brain reactions to stimuli that caused dissonance, which may indicate
that these people are less conscious of the inconsistencies between their beliefs and actions. EEG was
utilized by Daneshi Kohan and associates (2020) to examine the connection between various forms of
cognitive control and deceit. According to their findings, distinct brain patterns are linked to various
forms of dishonesty, and electroencephalography (EEG) holds potential as a means of identifying deceit
in forensic situations.

All things considered, the application of EEG brain mapping techniques offers a potential direction
for further study of lying and self-deception. These techniques provide a more objective way to measure
physiological responses and can help researchers better understand the cognitive processes underlying
these phenomena.

5 Conclusion
The present study aimed to introduce a novel approach to polygraph deception scoring using a

Multilayer Perceptron Neural Network (MLP) to predict high and low deception scores based on four
psychophysiological indicators found to be highly predictive in the literature: amplitude of electroder-
mal reaction (ARED), amplitude of blood pressure in brachial pulse (ATAB), change of baseline level
in chest breathing (MNBRT), and difference of altitude between breathing cycles (DIFA). The results



https://doi.org/10.15837/ijccc.2025.2.7008 13

of this study demonstrate that the MLP approach was able to correctly classify the deception level
of the 400 offenders with an 80% correct classification rate (CCR), consistent with previous literature
reporting similar prediction accuracy rates using machine learning approaches.

Our findings suggest that the use of psychophysiological indicators and machine learning algo-
rithms represents a promising approach to identifying deception in polygraph examinations. One
advantage of using an MLP over traditional polygraph scoring methods is its ability to simultaneously
consider multiple psychophysiological indicators, which has been shown to improve detection accuracy.
Moreover, using machine learning approaches such as MLP may help to minimize subjective scoring
bias inherent in manual polygraph scoring methods.

It is important to acknowledge the various limitations of the current study. Initially, the research
was based on a sample of offenders, which could limit its applicability to other groups. Subsequent
investigations ought to strive to duplicate these results in more extensive and varied cohorts. Secondly,
although the MLP technique demonstrated potential in precisely identifying dishonesty, it is crucial
to acknowledge that it has certain constraints. The actual implementation of machine learning algo-
rithms in real-world settings may be limited due to their high computational resource and expertise
requirements. This study provides significant new understandings and opportunities for progress in
the domains of law enforcement and forensic psychology. It also broadens the use of deep learning
techniques to a new domain and contributes to the ongoing discourse on fraud detection.

The study’s findings, which demonstrate an 80% accuracy rate in classifying deception scores,
highlight the MLP approach’s resilience in this situation and support the use of AI to improve the
precision and dependability of conventional polygraph tests. However, future research should continue
to investigate the reliability and validity of these approaches in larger and more diverse samples, and
to explore ways to improve the practical applicability of these methods in real-world settings.
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