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Abstract: The avoidance of obstacles placed in the workspace of the robot is a
problem which makes controlling them more difficult. The known avoidance methods
used for the robots control are based on bypass trajectory programming or on using
the sensors that detect the position of the obstacle. This paper describes a method of
training industrial robots in order for them to avoid certain obstacles in the workspace.
The method is based on the modelling of the robot’s kinematics by means of an
artificial neural network and by including the neural model in the robot’s controller.
The neural model simulates the robot’s inverse kinematics, and provides the joint
coordinates, as referential values for the controller. The novelty of the method consists
in the deliberately erroneous training of the network, so that, when programming a
direct trajectory in the workspace, the robot avoids a known obstacle.
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1 Introduction

Proportional-integrative-derivative PID controller is widely used for the control of robots,
because it is model-free, and its parameters can be adjusted easily and separately. An integrator
in a PID controller reduces the bandwidth of the closed-loop system. In order to remove steady-
state error caused by uncertainties and noise, the integrator factor has to be increased, having
the effect of reducing the performance of transient regime [19].

The application of neural networks to robots control is well known [10], [11] and an alternative
to the adaptive control is represented by the neural controllers [21].

Lewis et al. [10] demonstrate that neural networks do indeed fulfil the promise of providing
model-free learning controllers for a class of nonlinear systems. Neural network control offers
two specific advantages over adaptive control:

— neural network controller works for any rigid robot arm without computing a regression
matrix or performing any preliminary analysis

— neural networks provide a basis set for any smooth function, while the linear in the param-
eters equation provides a basis set only for linear systems.

There are several approaches to combine PID control with the intelligent control, such as the
neural control. The first way is to form neural networks into PID structure [5], [6], [10], [17].
By proper updating laws, the parameters of PID controllers are changed so that the closed-loop
systems are stable. The second method used intelligent techniques to tune the parameters of
PID controllers, such as fuzzy tuning [11], neural tuning [7], [18], and expert tuning [§].

All known approaches require the set point (the reference values) determination that consists
in drive joints coordinates which are obtained from the inverse kinematic analysis.

In the inverse kinematic analysis [14], [16], the coordinates and the effector’s orientation
(X,Y,Z,1,0,p) are considered to be known, and the coordinates of the joints (represented by g;,
i=1, ..., m, where m is the number of kinematic axes, equal to the number of the degrees of
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freedom) are to be determined. Although an apparently easy task, determining the coordinates
of the joints becomes more complicated when robots with complex kinematic structure, such as
the parallel robots, are at stake [20].

Given its advantages, neural computing is often used to solve the problem of inverse kine-
matics. The training of the neural network and the getting of the neural model implies solving
two important problems [7]:

a) getting the training data, especially when the mathematical model is not known, and
measurements on the physical model are necessary

b) performing the training process and obtaining an acceptable error, in the case of a large
amount of training data.

The proper control of the robot is carried out by the robot’s control equipment, by means of
generating a control input for each joint, so that it achieve coordinate q; resulted from the inverse
kinematics, and the effector pass through the points that belong to the trajectory. Therefore an
important problem is to determine the coordinates of joints.

Figure 1 shows a neural controller for the positioning of the effector, which uses a neural model
NM for the generation of the coordinates of the joints g;, PID controllers and feedback loops.
The method implies the completion of the following stages: providing the coordinates of the some
points that define the robot’s trajectory, generating some additional points on this trajectory
and determining the coordinates of the joints by using an NM neural model implemented onto
the robot’s control equipment, transmitting the coordinates of the joints to the controllers of
the PID; axes, which generate the actuating quantity e; corresponding to the M; motors of the
robot.
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Figure 1: Neural network controller

In order to obtain and implement the NM neural model, it is necessary to complete the
following steps: creating a neural network, creating a set of training examples, training the
neural network, which results in the creation of the neural model, testing and validating the
neural model, and using the neural model by implementing it in the control equipment. The set
of training examples consists of pairs of input-output data which are determined by the choice
of a point cloud in the robot’s workspace. The input signals are considered to be the positioning
coordinates of the points in the workspace, while the output signals, the coordinates of the joints
associated with these positions.

The disadvantage of this method is that when programming a straight trajectory between
two points the robot cannot avoid an obstacle, even though the volume covered by the obstacle
has been excluded from the set of training examples. At the same time, another disadvantage
consists in the large number of training examples needed to cover the entire workspace of the
robot.

In the majority of the handling applications, the robot’s task is to complete linear movement
between points that belong to the workspace, points where it has to retrieve or deliver objects,
or where the robot perform operations. This general method can also be used to obtain a neural
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model in the case of the effector’s move between two points, so that it can avoid an obstacle.
In this case, the set of training examples is constituted by the association of coordinates of the
points on the deviation trajectory with the coordinates of the joints corresponding to them. It
is necessary for the trajectory to be described in this case.

A way of describing the trajectory is by its mathematical expression, which has the disadvan-
tage of having to determine it. The next step consists in the determination of the coordinates of
the joints for a set of points that belong to the bypass trajectory. For complex structure robots,
such as the parallel robots with 6 degrees of freedom, the expression of the joints determination
is complicated. The general form of the expression is ¢;=f;(X,Y,Z,4,0,¢), i=1, ...,6. In this case,
the calculation is complex and it involves a large number of mathematical operations. This is a
disadvantage, especially in the case of robots that operate at high speeds, given that calculations
are made in real time.

Also, in the patent literature 9], [12], [13], there are many methods of robot control using
neural networks. Patent CN102346489 discloses a pulse neural network method of robot object
tracking control. The collision avoidance is done by processing a set of information from the
sensors. There is no information regarding a method to avoid a static obstacle in the robot’s
workspace to be achieved exclusively by neural network training, without the use of visual sensors
to identify the obstacle [15].

Some of the authors have been previously involved in research concerning the use of neural
networks for economic applications, or robot control. The program presented in [1], [2] was
designed with the purpose of using neural computing in the modelling and the simulation of pro-
cesses or activities. It is suitable for the study of any activity for which a three-layer perceptron
neural network may serve as a model.

Also, (3] shows a neural model for the kinematical analysis of six parallel robot. For reasons
related to simplification, there has been considered the move of the effector in a cube with a side
of 10 cm, without taking into account the variation of the position angles. For the training of the
network, there have been generated 130 training examples, and then the neural model for the
move of the robot on different trajectories has been validated. In the application of the neural
model, there has been noticed that the training of the neural model in a larger working space,
specific to a robot, is difficult, especially when the robot has to avoid an obstacle. That is why
the authors have aimed to develop a more effective method of control for the cases in which the
robot has to avoid an obstacle.

In [4] there has been presented the main principle of a method of obstacle avoidance, by
means of an erroneous instruction of the network. The experiments have been completed in a
smaller part of the robots workspace (a cube with the side 10 cm). Further research illustrated
the difficulty of obtaining an effective neural model that can lead the effector with a precision
that is appropriate to the application, and avoid the obstacle. There have been circumstances in
which the neural model did not offer the coordinates that lead the effector beside the obstacle [3].
The validation of the models presented [3], [4] has been made based on sets of data that have
not been used as training data; there has been completed no cross-validation.

In the current paper the authors have developed the method in terms of the generation of
the set of the training examples. In this sense, there have been stated clear rules that establish
the training examples. In a first stage, there has been completed a neural model tested through
a 4-fold cross-validation technique. The case studies have been carried out in a workspace that
had the shape of a cube with a side of 600 mm, corresponding to the majority of the applications,
by using an obstacle with a cube shape with a side of 200 mm. In order to avoid the collision,
there have been studied three types of envelopes.

There are several types of neural networks that can be used in modelling a system. They
can be classified based on criteria such as the structure or the instruction types (networks of
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perceptron type, radial basis function networks, Kohonen self-organization networks, Hopfield
networks, fuzzy neural networks, networks with supervised or non-supervised training and so
on). In all the modelling activities that are referred to in this paper there have been used
neural networks of the type of a three-layer perceptron, in which the initial layer has 6 neurons
corresponding to the position (X,Y,Z,1,0,¢) of the effector. In the case of some of these models,
the final layer has 6 neurons corresponding to the coordinates of the joints ¢;, i=1, ...,6, or only
one neuron, corresponding to the coordinate of a single joint (g3 for instance). The number of the
neurons of the hidden layer has been determined by trial, throughout several training sessions,
based on the criteria of the minimization of the mean square error. The chosen activation
functions have been log-sigmoid for the neurons of the hidden layer, and the function purelin
for the neurons on the output layer. The training of the networks has been completed using
the Levenberg-Marquardt method. Unlike the descent gradient method, the process of training
through the Levenberg-Marquardt method could converge quickly when close to the solution. As
it is a method based on Hessian, there is no risk that in such a circumstance the solution be lost,
as it can occur in the training with the descent gradient method, when a higher rate of learning
is used. In the modelling activity, there has been used the Matlab application.

2 Method to avoid obstacle

2.1 Method presentation

The problem that this paper solves consists in the elaboration of an industrial robot training
method based on neural network modelling and training, so that, when programming a straight
trajectory between two points through which the robot’s effector has to pass, the robot avoid an
obstacle that it encounters.

The method of training robots to avoid obstacles is based on the modelling, training and
use of three-layer perceptron type neural networks, having k neurons in the input layer, which
corresponds to the number of degrees of freedom, m neurons in the output layer, which corre-
sponds to the number of kinematic axes, and a number n, consisting of 15 to 50 neurons, which
corresponds to the hidden layer. Figure 2 shows the scheme of a neural network of this type that
has 6 neurons in the input layer, corresponding to the 6 degrees of freedom, 6 neurons in the
output layer, corresponding to the 6 kinematic axes and an unspecified number n, in the hidden
layer.

The training data are determined from the mathematical model or by experimenting on the
physical model of the robot, by choosing a point cloud contained in a work plane included in
the robot’s workspace, plane in which the robot has to operate at least one move between two
given points. The avoidance of the obstacle in the robot’s trajectory is achieved by the training
of the network, with input data corresponding to the coordinates of some points on the robot’s
direct trajectory between two points, and output data (the joints coordinates) corresponding to
the bypass trajectory.

The set of training examples will have as input signals the coordinates of the cloud of points,
while as output ones, the coordinates of the joints, calculated according to the rule R below:

R1) for a point in the work plane outside the obstacle or its envelope, it is established as pair
the coordinates of the correct joints (in accordance with the mathematical model which
describes the robot’s kinematics, or in accordance with the experimental measurements)

R2) for a point in the work plane that belongs to the obstacle or its envelope, it is established as
pair the coordinates of the joints that belong to a different point, the latter being situated
on the surface of the obstacle, or on its envelope, depending on the case.
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Figure 2: Neural network diagram

The number of neurons in the hidden layer is chosen by means of trials, a practice which is
used in neural computing.

The novelty of this method consists in the way the training set is built. This leads to a
deliberately erroneous training, so that in the recall phase it is not necessary to know the bypass
trajectory.

The set of training examples is constituted by input-output data pairs, in which the input
signals correspond to some points on the robot’s direct Td trajectory. The output signals, in the
training phase, are the coordinates of the joints, but in "deliberately erroneous" way, they are not
the coordinates associated to the direct trajectory that crosses the obstacle, but to the output
signals corresponding to the points situated outside the obstacle, on a Ta avoidance trajectory.
Thus, in the recall phase, the model is going to behave erroneously. This means that for the
points on a direct trajectory (a line, in most of the cases) which does not bypass the obstacle,
transmitted as input data, the neural model will generate, as output, the coordinates of the
joints that will lead the robot beside the obstacle.

In order to achieve the neural model NM, one has to complete the following steps:

— create a neural network that has, in its input layer, a number of neurons equal to the
number of the robot’s degrees of freedom, and in its output layer, a number of neurons
equal to the number of joints ¢;

— create a set of training examples formed by pairs of effector coordinates, which belong to the
robot’s work plane, and corresponding coordinates of the joints ¢;, determined according
to rule R described above

— train a neural network with the sets of training data, the result of the training process
being called "neural model"

— test the neural model achieved previously and validate it, in case acceptable errors are
obtained

— use the neural model, which means that the neural model receives exclusively input data
which consists of robot effector positions, and generates the coordinates of the joints.
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2.2 Cross validation of the method

Let us consider the case of a serial robot with six degrees of freedom (Figure 3), given by
three positioning movements (X, Y and Z), and other three effector orientation movements (1, 0,
¢). Based on the robot’s kinematic scheme (Figure 3a), one can describe the connecting relations

Figure 3: a. Kinematic diagram; b. The robot architecture

between the joints coordinates q;, as well as the effector’s position (X, Y, Z, 1, 6, ¢). Thus, the
mathematical model for the inverse kinematics is obtained by solving the system of equations

(1)-(6):

X = Xo+q1 - iry + la2sin(8) (
Y =Yo+q2 iy + (I + l2cos(0))siny (
Z =Zy+ q3 ity — (1 + lacos(0))cosp (3
Y =10+ qa-iry (
0 =00+ qs5 it (
Y=o+ g6 1Ty (6
where iry, i1y, i72, iTy, iT6, iT, Tepresent the transfer functions of the transforming mech-

anisms which generate the given movements, and Xy, Yy, Zg, g, 6o, wo represent the initial
values obtained for ¢;=0, i=1,...,6.

The architecture of the robot in Figure 3a is shown in Figure 3b. A portion of the robot’s
workspace (Figure 3b), which has the shape of a parallelepiped with base P;PP3Py is being
considered. In the workspace there is an obstacle ABCDA’B’C’'D’ which has to be avoided
during the operation. It is assumed that the robot’s effector has to move between points P; Pj,
but on a trajectory that should avoid the obstacle ABCDA'B'C'D’.

The plane of points Py, P», Ps, Py is called work plane (represented as Wp), namely a plane in
which the robot has to complete a number of operations (retrieve or place objects, feed equipment
etc.).

We are looking for a simple and comfortable method of the robot control, which would provide
as input data the coordinates of some points on the direct trajectory Td and make the robot move
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on the trajectory Ta which avoids the obstacle. This is achieved by a "deliberately erroneous"
training of the neural network which models the robot’s behaviour.

The set of training data, under the form of input-output matrix pairs, is obtained by the
association of the effector’s coordinates (X, Y, Z, v, 6, ¢) with the joints coordinates (¢;, i=1,
..., 6) resulted by means of mathematical model or by measuring on the physical model. The
generation of the training data is made according to table of Figure 4.

No. Points of
training Wished input Wished Origin

- output G
1% Py Xu Xt 7 Y1 61 Q1 qi1 Py
2% ) Xo N Z 2 62 2 Qiz P
3. Ps X5 Y3 Z3 W3 63 Q3 i3 Py
4. Py Xa Y4 Za W4 04 04 Gi4 Py
95 A Xa Ya Za Wa Oa [0)N i A°
6. B X Ys 7B VB [F:) OB qip’ B’
73 C Xc Yc Zc \/ Oc Pc qic &5
8. D Xb Yo Zp Wp Op o) qiD D’
9 O Xot | Yor | Zot Yot Bo1 Po1 qiot 0%

Figure 4: The way for obtaining the training data

In order to avoid the obstacle, the robot has to move on a deviating trajectory Ta. For the
robot to move on the deviating trajectory Ta, its control equipment has to receive information
regarding the shape of the trajectory as some coordinates of some points on the trajectory. A
possible description of the trajectory is given by its mathematical expression, which has the
disadvantage of having to determine it. The next step is to determine the coordinates of the
joints for a set of points which belong to the deviating trajectory Ta.

According to the approach of this paper the avoiding trajectory is approximated by a set of few
points, without knowing the mathematical expression of the trajectory, and the determination
of the joints is done on basis of a neural model.

In order to complete the data in table of Figure 4, in the case of the robot in Figure
3b, there have been chosen the points P;(200,200,200), P»(800,200,200), P;(800,800,200) and
P4(200,800,200). The obstacle is considered to be a parallelepiped defined by the points A (400,400,200),
B(600,400,200), C(600,600,200) and D(400,600,200), situated in the work plane and the points
A’(400,400,400), B’(600,400,400), C'(600,600,400) and D’(400,600,400), situated in a plane par-
allel to the work plane, 200 mm away.

For the validation of the method, there has been considered the move of the effector on the
diagonal P;Ps (figure 3b). In order to establish the set of the training and testing examples for
the move on the segments P A and CP;3, rule R1 is applied. As for the movement on the segment
AC, there is applied rule R2. The set of the training data is shown in table of Figure 5.

There has been applied a 4-fold cross-validation technique of the method. Thus, the set of
the training examples in table of Figure 5 has been divided into four subsets. The inclusion
rule regarding the training examples in the four subsets is described by means of the indexes of
the lines in table of Figure 5, grouped in the subsets My, k=1, ...,4, according to the algorithm
below:

Mk: = {]k,n | jk,n =k+ 4”)]{7 S [1,4],71 S [07 75]} (7)

For the validation of the method, out of the four subsets, there has been successively retained
a subset for validation, while the other three subsets have been used, merged, for training. Thus,
there have been completed four rounds of training and validation of the method, using the
neural networks. Within each round, there have been developed several neural models of the
three-layer perceptron type, having the architecture 6-m-6, where m represents the number of
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Trmg Effector coordinates Joint coordinates (q;;, =1.....6; =1,...301)
points

i % Tj L Zj i Bi 9 g1 Qj CES G4 95j | Gsi
0 1 2 3 4 ] 6 7 8 9 10 11 12 15,
1 200 00 200 200 0 0 0 20 20 20 20 20 20
2 202 202 200 200 0 0 0 20.2 20 20 20 20
3 204 204 200 200 0 0 0 2 20 20 20 20
4 206 206 200 200 0 0 0 2 2 20 20 20 20
100 308 308 200 200 0 0 0 39.8 39.8 20 20 20 20
101 400 400 200 400 0 0 0 40 40 40 20 20 20
102 402 402 200 400 0 0 0 40.2 40.2 40 20 20 20
103 404 404 200 400 0 0 0 40.4 40.4 40 20 20 20
0 0 0 0 0 0 20 20 20
199 506 506 200 400 0 0 0 59.6 59.6 40 20 20 20
200 508 508 200 400 0 0 0 508 508 40 20 20 20
201 600 600 200 400 0 0 0 60 60 40 20 20 20
202 602 602 200 200 0 0 0 60.2 60.2 20 20 20 20
203 604 604 200 200 0 0 0 60.4 60.4 20 20 20 20
204 606 606 200 200 0 0 0 60.6 60.6 20 20 20 20
200 796 796 200 200 0 0 0 79.6 79.6 20 20 20 20
300 708 708 200 200 0 0 0 79.8 79.8 20 20 20 20
301 800 800 200 200 0 0 0 80 80 20 20 20 20

Figure 5: The set of training examples for cross-validation

the neurons in the hidden layer. The activation functions chosen have been the log-sigmoid for
the neuron for the hidden layers, and the purelin function, respectively, for the neuron on the
output layer. The instruction has been completed by using the Levenberg-Marquardt method,
in the case of the Matlab application. Following the criterion of the minimization of the mean
square error throughout the repeated trainings, there have been retained models for which m=31.
The training parameters have default values, namely maximum epochs (1000), performance goal
(0), minimum gradient (107%), maximum validation checks (6), multiplication factor (0.001),
multiplication factor decrease ratio (0.1), multiplication factor increase ratio (10), maximum
value of multiplication factor (1010).

Table presented in Figure 6 shows the most effective (minimum mean square error, marked
as MSE) obtained when training the networks in the case of each of the four rounds.

Round Training MSE
1. 6.0xe3
2. 2.8xe?
3. 3.0xe2
4. 7 9xe

Figure 6: The best MSE

It has been noticed that for each of the four neural models obtained by means of the combi-
nation of three subsets M}, there has been obtained, through testing on the fourth test subset,
very good results for the coordinates X, Y, v, 6, . The results of the four simulations are briefly
shown in Figure 7 and in table of Figure 8.

The analysis of the results obtained shows that there appear problems when simulating the
coordinate Z at the intersection of the direct trajectory with the obstacle, close to the latter.
Outside the area close to the points AA” and CC’, all the four simulations grant good results for
coordinate Z as well.
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Figure 7: The errors of coordinates X, Y, Z

No.
testing Cross validation
points
i M; M, M; M,
0 %X 1 Yol YL 1; %62 X2 Y2 %6203 %Y 3; YoZ3; YaXd YT o4
1 022 0.13 -0.03 0.03 0.04 0.03 0.16 0.02 -0.08 -0.01 -0.01 0.02
2 0.04 0.03 0.03 0.10 0.10 0.07 0.14 0.02 013 -0.04 -0.01 0.03
3 0.04 0.04 0.06 012 0.12 0.06 0.12 0.01 017 -0.04 0.00 0.04
21 0.06 0.06 0.01 0.07 0.04 -1.08 0.03 0.03 0.34 -0.04 -0.03 0.27
2 0.03 0.03 0.10 0.07 0.05 0.72 0.04 0.04 -1.78 0.01 0.00 0.38
23 0.02 0.02 -0.47 0.04 0.01 1.58 0.03 0.03 -1.52 0.02 0.01 -1.08
24 0.02 0.02 0.83 0.01 -0.05 0.13 -0.04 -0.09 217 -0.03 -0.01 292
25 0.02 0.02 -2.4% 0.07 0.00 -2.73 0.00 0.00 -3.40 0.01 -0.01 2470
26 0.03 0.03 -2497 0.06 -0.03 -13.36 0.00 0.00 8.70 -0.01 -0.02 3.83
27 0.02 0.02 126 0.03 -0.03 220 0.01 0.03 -3.00 0.00 0.01 -0.09
28 0.00 0.00 -0.64 -0.02 -0.06 -1.07 0.01 0.01 1.38 -0.01 -0.01 0.12
29 0.00 0.00 022 -0.02 -0.07 0.15 0.03 0.03 0.12 0.03 0.02 -0.15
30 0.01 0.01 0.07 0.03 -0.01 0.40 0.05 0.05 -0.81 0.00 0.00 0.07
46 -0.01 -0.01 -0.09 0.07 0.02 0.01 0.02 0.21 0.01 0.01 -0.07
47 -0.01 -0.01 -0.33 0.10 0.06 0.01 0.01 0.33 -0.01 -0.01 -0.44
48 0.00 0.00 0.17 0.00 0.07 0.02 0.02 -0.41 0.00 0.00 1.05
49 0.00 0.00 0.78 0.04 0.07 0.01 0.03 -0.41 0.01 0.01 -3.93
30 0.00 0.00 -1.4% -0.03 0.03 0.01 0.02 0.73 0.01 0.01 -39.31
] | 0.00 0.00 -24.99 0.10 0.01 0.01 0.02 51.64 -0.01 0.00 -3.01
32 0.00 0.00 55 -0.09 -0.01 0.01 0.02 -3.20 0.00 0.00 0.64
33 -0.01 -0.01 -1.74 -0.06 -0.02 0.01 0.02 1.05 0.00 0.00 021
34 0.00 0.00 0.29 -0.04 -0.02 0.00 0.02 1.52 0.00 0.00 -0.21
33 0.00 0.00 042 -0.04 -0.03 0.01 0.02 -0.30 0.00 0.00 0.02
74 0.00 0.00 0.01 -0.03 -0.03 0.13 0.00 0.01 0.00 -0.01 -0.01 0.04
15 0.00 0.00 -0.02 -0.09 -0.09 0.13 0.00 0.02 -0.02 0.00 0.00 -0.07
76 -0.02 -0.02 -0.05
EMSE for Z:  16.33203 BMSE for Z:  13.0699% BRMSE for Z:  12.7729 FMSE for Z: 1923433

Figure 8: Cross-validation results
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In a subsequent stage, efforts have been made to improve the solution by the development of
some simplified neural models. Thus, there have been considered the networks of the three-layer
perceptron type, with 6 neurons in the input layer, corresponding to position (X, Y, Z, ¥, 0,p)
of the effector, and a single neuron in the output layer, corresponding to the coordinate of the
joint g3, which determines the Z coordinate. There has been applied the validation technique
of the models, the 4-fold cross-validation. The training has been completed using the set of the
examples shown in table 2; a remark that should be mentioned in the case being that only the
values of the coordinate ¢3; have been taken into account as output. This set has been divided
into four subsets according to the rules described by sets My, k=1, ..., 4. For each of the four
combinations of the sets My, k=1, ...,4, there have been realized four trainings of the network.
Thus, during the training, there have been obtained mean square errors that belong to the in-
terval [10710, 1071]. For each of the four rounds of training-validation corresponding to the four
combinations of the sets My, k=1, ...,4, there has been determined the root mean square error
(RMSE) of approximation of coordinate Z. This has been calculated as an overall mean of all the

individual errors ZJ(.I? for a given value k data, where I=1, ..., 4 corresponds to the four neural

)

models obtained within each round. These values are shown in table of Figure 9.

Number Cross-validation
of testing
points M, M, M; M,

]

0 Azj:l [45] AZJ 5 6] AZJ:E [5] AZJ-:4 [}] A-Zj:l @ AZJ-:; [&1] AZJ 5 @ AZJ:_.; @ Azj:l @ A-Zj:z @ Azj:s )] AZJ 4(32' AZJ:I “@ Azj:: @ A-Zj:s ] A.'ZJ-:4 @
1 0001 -0041] -0234] 0079 ooo0] -0119] o461 -00s9] 2256 -1048] -ooo1] -1409] 1060] o0013] o064 -0032
2 -0.001 -0,031 -0216 0.077 0.000 -0.118 0,428 -0.058 2,166 -0.970 -0.001 -1375 1,654 0.013 0.068 -0.030)
3 0001 0022 0198 o074 oooo| -o116] o402 0057 z091] -0ses| -ooo1| -1343]  z211]  oo13]  oo7|  -ooos
22 0,000 -0.026 0,034 -0.267 0,000 0,044 -3.460 -0.039 1.740 -0.927 0,002 -0.369 -9.481 0.008 -0.029 0,001
23 0001] 0030 0032] -0461] 0000 0572] 12696 -0038] 1555 3.104] 0000] 2796| 10090 0010] 0271 0002
24 -0.002 -0.034 -0.531 -0.024 0,001 1,719 -1.811 -0.037 0,055 -9.585 -0.035 1.152 48.128 0.016 0,578 0,000]
23 0000] -0038] -143a] 1673 -0102] 2746 59249 -0093] sos3s| 19992 2327]  s756| 101070] 15.483] 94398]  4.899)
26 -14.981| -99.853 -99944| -40.647 0,102) -111.156) -51,178 12,837 3,938 -20,808 7.291 22060 -45.740 0.144 -0.949 0,229
27 0002 ops0] 1127] -1ost|  oooo| ssed|  zoe9| 0057  zo046]  60s2|  o0017] 5243 7s38]  oo02] 0365|0004
28 0,000 0,036 0,562 0.356 0.000 -2918 12.609] 0,056 1,783 1,850 0,000 -2.480 11334 0.006 0.367 0,004
29 0,000 0,032 0213 0.367 0,000 -1.146 5,186 -0.055 1,587 0.354 -0.002 1.655 15,798 0,007 0.166 -0.003
30 0000] 0029 0013] 0185 0000] -0177] -2233] -0054] 1406 0024] -0002] 2654| 12724] 0006] 0090 -0.002
13 0000] 0017 -0141] -0089] 0000 -1251 1780] -0027] 0374] 0283] 0011] -7329] 3404] -0003] -0057] -0.004]
49 0,000 0,021 0,127 -0.301 0,000 -1.382 13.452 0,041 0418 8121 -0.083| -13537[ -12.827 -0.008 0.566 -0.004
50 0001 o024 1079] -1669] oooo| -a614] -11118] -oo04| 2237 -7t 1757| 23662| -24820 -4s83] -100176] 0705
51 -12.486| -178302) -100256| -116.688| 170280) 103.936 99415] 156207 112027 39,528 23,061 -6,690| 107787 -0221 -0.524 -0.688]
52 0005 -003s| -1026] 2379] o001 10627 10384]  1315] -4863] 5776| -0240] 10641] sss43]  ooo4| o097 0007
53 0,000 -0,031 -0,09% -0.055 0,001 -0.721|  -16.056 -0.188 -0.233 2,797 -0.010 7917 22,864 -0,003 0.104 0,007
54 0,000 -0.026 0,160 -0.262 0,001 -0.424 -6.344 -0.084 -0,005 4455 -0.005 2,124 3,487 -0.006 0,100 0.006|
73 0,000 0,037 0,174 -0.320 0,000 -0.256 -0.582 -0.056 -0.489 1.381 -0.001 -0.517 3,082 -0.020 0.077 -0.006]
74 oooo] o029 0170 -0323] oo0o0] -02s9| -0sss| -00s7] -0356] 1766] -0001] -046s| 3433 0021 o078 -0008
75 0,000 0,019 0,164 -0325 0,000 -0.262 -0,593 -0,058 -0.643 2236 -0,001 -0.404 3,743 -0,022 0,081 0,009
76 -8.3E-05 0,0062| 0155032 -032785

RMSE=16.01783 RMSE=17.73955 RMSE=8455625 RMSE=13 45884

Figure 9: The overall RMSE

The analysis of the data in tables of Figures 8 and 9 shows that there is no significant
difference between the errors of approximation of coordinate Z in the case of the two modelling
approaches. As a conclusion of this cross-validation, it has been remarked that the method can
be applied, but in order to avoid the obstacle it is necessary to envelope it (to cover the obstacle
with a smoother surface). The following case studies play the role of evaluating the avoidance
method by using the neural models in which the obstacle is enveloped.
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3 Case study for an enveloped obstacle

In order to analyse the avoidance precision, based on the same number of training points,
the obstacle with three types of envelopes (Figure 10) has been considered.

The point O; has the coordinates (500,500,200), while the point O} has the coordinates
(500,500,450), the distance O10] being greater than the segment AA’. In order to reduce the
number of the training examples, it is considered that ¥=0=¢=0.

Figure 10: The obstacle envelopes

Trmg Effector coordinates Joint coordinates (g, i=1,....6; j=1....169)
points

i P ¥j Zj Zj W 8 0 q1 Qo LER) Q4 Qi |95
0 1 3 4 5 6 7 8 9 10 11 12 13
1 200 200 200 0 0 0 0 20 20 20 20 20 20
2 250 200 200 200 0 0 0 25 20 20 20 20 20
3 300 200 200 200 0 0 0 30 20 20 20 20 20
4 350 0 200 0 0 0 33 20 20 20 20 20
5 400 2 200 0 0 0 40 20 20 20 20 20
6 450 200 20/ 0 0 0 45 20 20 20 20 20
7 500 200 200 200 0 0 0 50 20 20 20 20 20
8 350 200 200 200 0 0 0 55 20 20 20 20 20
9 600 200 200 200 0 0 0 60 20 20 20 20 20
10 650 200 200 200 0 0 0 63 20 20 20 20 20
11 100 200 200 200 0 0 0 10 20 20 20 20 20
12 750 200 200 200 0 0 0 13 20 20 20 20 20
13 300 200 200 200 0 0 0 80 20 20 20 20 20
14 200 250 200 200 0 0 0 20 25 20 20 20 20
13 300 450 200 200 0 0 0 80 45 20 20 20 20
19 200 500 2 0 0 0 50 20 20 20 20
80 250 500 200 2 0 0 0 50 20 20 20 20
81 300 500 200 200 0 0 0 3 50 20 20 20 20
82 350 500 200 200 0 0 0 50 20 20 20 20
83 400 500 200 400 0 0 0 40 50 40 20 20 20
24 450 300 200 423 0 0 0 45 30 425 20 20 20
83 500 500 200 450 0 0 0 50 50 45 20 20 20
86 350 500 200 425 0 0 0 33 50 425 20 20 20
87 600 500 200 400 0 0 0 60 50 40 20 20 20
83 650 500 200 200 0 0 0 63 50 20 20 20
89 700 500 200 200 0 0 0 10 50 20 20 20
20 750 500 200 200 0 0 0 13 50 2 20 20 20
21 300 500 200 200 0 0 0 80 50 20 20 20 20
2 200 350 200 200 0 0 0 20 55 20 20 20 20
168 750 800 200 200 0 0 0 13 80 2 Pl 20 2
169 300 300 200 200 0 0 0 80 80 20 0

Figure 11: Training data for Envelope 1

For the points in the work plane that do not belong to the obstacle proper or to its envelope,
the coordinates of the joints are calculated based on the coordinates (Xj, Y;, Z;, ¥;, 05, ¢;)
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which define these points.

For the other points in the work plane which belong to the obstacle, or to its envelope, namely
those which are at the intersection between the work plane and the envelope of the obstacle, the
coordinates of the joints are calculated based on the coordinates of some corresponding points
situated on the envelope.

For each of the three envelopes of the obstacle, there has been created and trained a neural
network. Table of Figure 11 shows how the training data for Envelope 1 has been achieved.

The training of the neural network has been completed having as input signals coordinates
X, Y}, Zj, 1, 05, @; of the points (columns 1-3 and 5-7 in table of Figure 11), and as output
signals, the coordinates of the joints ¢;; (columns 8-13 in table of Figure 8) corresponding to
points X;,Y; and Z;. The same has been applied in the case of Envelopes 2 and 3.

. End-effector coordinates Erors [%4]
Testing
points Envelope | Envelope | Envelope Envelope 1 Ervelope 2 Envelope 3
] DO I S 4 - - : vi | 8 | e
zZ i zZ i Z j '3’6er ‘!"o‘frj '!'aer ‘!'aXrJ- %Yrj ELYA ] q’dx.t’j '1"0YIJ' %er

0 1 2 3 4 3 6 7 g 9 10 11 12 13 14 13 16 17 18

1 200 200 200 200 200 200 ] 0 0 0.82 1225 0.73 .33 0.38 -0.87 0.635 0.71 024
2 230 230 200 200 200 230 0 0 0 024 -0.44 3.06 178 151 1.72 -0.40 -0.57 -1.09
3 273 273 200 200 200 273 0 0 0 134 0.61 2.88 118 0.98 343 022 0.33 -1.42]
4 300 300 200 200 200 300 0 0 0 1.76 0.76 148 0.76 235 0.69 -0.05 -0.09 -1.99]
3 323 323 200 200 200 323 0 0 0 0.98 0.10 1.61 -111 -1 6.18 0.10 015 -2.13
6 350 350 200 200 200 330 0 0 0 026 -0.48 2.36) 023 039 794 -0.0% -0.13 -0.60
7 373 373 200 200 300 373 0 ] 0 0.06 064 4021 0.79 0.3% 3.00 0.04 0.06 -0.98
b 400 400 200 400 400 400 0 0 0 0.49 -0.28 -3.04] 1.62 -0.39 -2.44] 023 -0.23 -0.89)
9 4235 425 200 4125 4125 4125 0 0 0 1.03 0.14 -211 L.70 -0.04 -3.12 022 024 -1.13
10 430 430 200 425 423 423 0 ] 0 0.98 0.13 217 128 0.59 -1.02 0.02 0.02 -0.81
11 475 475 200 4373 4375 4373 0 0 0 041 -0.16 3.75 0.72 1.30 043 -0.01 -0.02 -1.70]
12 300 300 200 450 450 450 0 0 0 038 0.04 071 048 131 033 0.03 -0.01 -2.82
13 323 323 200 4373 4373 4373 0 0 0 0.61 0.36 -1.22] 023 0.88 1.10] 0.01 0.05 -1.62
14 330 350 200 425 423 423 0 0 0 047 0.13 -0.49] 023 033 0.29 0.19 014 -0.19]
15 373 373 200 4125 4125 4125 0 0 0 -0.06 -032 -1.54 043 029 -2.08 -0.04 0.00 -1.04
16 600 600 200 400 400 400 0 0 0 -0.04 -0.28 -3.27 0.53 0.50 -3.98 -0.08 -0.08 -2.81
17 623 623 200 200 300 373 0 0 0 0.38 0.04] 2469 047 036 332 0.12 0.13 -2.80]
18 630 630 200 200 200 330 0 0 0 0.43 0.03 0.82 0.17 033 638 026 -0.30 -2.48
12 673 673 200 200 200 323 0 0 0 0.23 0.18 0.93 041 022 340 0.0 0.13 -2.06]
20 700 700 200 200 200 300 0 0 0 0.20 028 0.96] 023 0.60 2.62) 0.10 0.10 037
21 125 125 200 200 200 275 0 0 0 0.20 -0.38 144 .46 0.60 -0.05 -0.00 0.13 245
2 730 750 200 200 200 230 0 0 0 0.18 -0.44 0.63 0.14 1.18 438 -0.14 -0.19 -0.26
23 300 300 200 200 200 200 0 0 0 0.18 -0.08 0.44] 0.13 -0.92 -0.38 -0.06 -0.07 0.62

Figure 12: Errors for Envelope 1, 2, 3

In order to validate the method and the neural models, there have been considered as input
data the coordinates of points (X, Yj, Z;, ¥}, 8}, ¢;) corresponding to the move of the effector on
the direct trajectory P P3 (columns 1-3 and 7-9 in table of Figure 12). Based on the coordinates
of the joints ¢;; simulated by the neural models corresponding to the envelopes, by means
of relations (1)-(6), there have been calculated the effector coordinates and they have been
graphically represented in Figure 13. The error obtained through the simulation on the neural
model corresponding to each envelope is shown in table of Figure 12 (columns 10 - 18).

The results in table of Figure 12 show that Envelope 1 does not solve the problem at the
borders of the intersection of the direct trajectory with the obstacle, as it is possible for the
latter to be hit. This problem is solved in the case of Envelopes 2 and 3. The precision obtained
by simulation for the models Envelope 2 and Envelope 3 can be accepted only in the case of
some handling applications that do not require a high level of precision. This precision can be
improved by increasing the number of training examples and by increasing their density in the
workspace. In this research, there have been used only 169 training examples for the entire
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a)

b)

Figure 13: Effector coordinates for a. Envelope 1; b. Envelope 2

workspace, the distance between two successive points being 50 mm.
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Figure 14: Direct and simulated trajectory

In order to test the obstacle avoidance in the case of programming several trajectories in the
work plane (Envelope 3), there has been considered the robot’s move on direct trajectories under
the form of straight segments between points P;-Py-Ps-Ps-P3-P) (Figure 14). The points Py, Py,
Ps5, Pg, P3 are points in which the robot has to complete operations and where the effector has
to position itself with an accuracy corresponding to the application. All the points Py, ..., P
are situated in the work plane Wp. For the validation, there has been used the neural network
for Envelope 3 and the results are shown in Figure 14.

The analysis of the results in Figure 14 reveals that, although the input data consisted
of coordinates of some points on the direct trajectories Td, the neural model offers the joint
coordinates that make the robot avoid obstacle when direct trajectory Td intersects the envelope
of this obstacle. When the direct trajectory does not intersect the obstacle, the neural model
NM provides data that leads the robot’s effector on the direct trajectory Td.

4 Conclusions and future work

In order to validate the method by numerical research, there has been considered a robot
with six degrees of freedom that has to move between two points in the workspace Wp. In
plane Wp, there has been considered a parallelepiped-shaped object which has to be avoided.
The research aimed to obtain several neural models of the robots kinematics based on a certain
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method of creation of the set of training examples. Within the research, it has been noticed that
the model obtained by the training of the robot so that it move on a trajectory that avoids, to
the limit, the straight trajectory (the completed trajectory follows the obstacles outline) does
not approximate well the move along the axis OZ at the frontier of the obstacle. There have
been recorded relative errors of approximately 50% in such points.

In order to obtain an improved model, there have been considered three envelopes that dress
the obstacle. For each envelope, there has been trained a neural network, each having the
same number of training examples. The set of training examples has been generated by inverse
kinematics analysis, considering a cloud of equally distanced points in the robot’s work plane.
The joint coordinates have been generated depending on the obstacle’s envelope, in accordance
with rule R described in the paper.

It has been noted that in all the three cases the neural model provides the joint coordinates
that lead the end-effector on a bypass trajectory. In all the three cases studied, the bypass
trajectory intersects the obstacle near the points that limit its superior base ( A'B'C’'D’ ). The
positive deviation from the coordinate Z does not affect the obstacle avoidance, only the negative
ones.

The analysis of the errors in the case of the coordinates (Xrj, Yr;, Zr;) simulated by the
neural network relating to the programmed coordinates (X;, Y;, Z;) shows that the results are
influenced by the choice of the obstacle envelope as follows:

e for Envelope 1:

— the coordinates Xr; and Yr; are approximated with errors less than 2%

— there are important errors in the case of coordinates Zr; simulated by the neural model
in the area close to the obstacle (40%, table of Figure 12, row 7)

— close to points A’ and C’, the deviant trajectory intersects the obstacle (%Zr; =
-5.27%, table of Figure 12, row 16)

e for Envelope 2:

— the coordinates Xr; and Yr; are approximated with errors less than 2.5%

— the coordinates Zr; simulated by the neural model are quite well approximated (%Zr;<8%,
table of Figure 12, row 6)

— close to points A’ and C’, the deviant trajectory intersects the obstacle (%Zr;= -3.98%,
table of Figure 12, row 16)

e for Envelope 3:

— the coordinates Xr; and Yr; are approximated with errors less than 1%
— the coordinates Zr; simulated by the neural network are well approximated (%Zr;<3%)

— close to points A" and C’, the deviant trajectory intersects the obstacle (%Zr;=2.81%,
table of Figure 12, row 16).

The problem of the intersection between the bypass trajectory and the obstacle can be solved
by the choice of an envelope that exceeds the obstacle in all its points. Thus, for the case in point,
if one chooses the parallelepiped ABCDA’B’C'D’ with sides 10% larger that the dimensions of
the obstacle, the problem of the collision is going to be avoided. Another option is to increase
the training examples number.

Future research aims to optimize the avoidance trajectories and to improve the position
accuracy in the working points. The trajectory optimization will account for accuracy and
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energy consumption refinements. The positioning accuracy in the working points will be made
by choosing a denser cloud of points around them. Further research aims to study the method
presented in this paper using other types of neural networks and make a comparative analysis of
the results.
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