The Pseudo-Pascal Triangle of Maximum Deng Entropy

Authors

  • Xiaozhuan Gao
  • Yong Deng

Keywords:

Deng entropy, Maximum Deng Entropy, Pascal triangle, Dempster-Shafer evidence theory, basic probability assignment.

Abstract

PPascal triangle (known as Yang Hui Triangle in Chinese) is an important model in mathematics while the entropy has been heavily studied in physics or as uncertainty measure in information science. How to construct the the connection between Pascal triangle and uncertainty measure is an interesting topic. One of the most used entropy, Tasllis entropy, has been modelled with Pascal triangle. But the relationship of the other entropy functions with Pascal triangle is still an open issue. Dempster-Shafer evidence theory takes the advantage to deal with uncertainty than probability theory since the probability distribution is generalized as basic probability assignment, which is more efficient to model and handle uncertain information. Given a basic probability assignment, its corresponding uncertainty measure can be determined by Deng entropy, which is the generalization of Shannon entropy. In this paper, a Pseudo-Pascal triangle based the maximum Deng entropy is constructed. Similar to the Pascal triangle modelling of Tasllis entropy, this work provides the a possible way of Deng entropy in physics and information theory.

References

Abellán, J.; Mantas, C.J.; Bossé, E.(2019). Basic Properties for Total Uncertainty Measures in the Theory of Evidence, Information Quality in Information Fusion and Decision Making, 99-108, 2019. https://doi.org/10.1007/978-3-030-03643-0_5

Abellán, J.; Mantas, C.J.; Castellano, J. G. (2017). A Random Forest approach using imprecise probabilities, Knowledge-Based Systems, 134, 72-84, 2017. https://doi.org/10.1016/j.knosys.2017.07.019

Abellán, J. (2017). Analyzing properties of Deng entropy in the theory of evidence, Chaos Solitons & Fractals, 95, 195-199, 2017. https://doi.org/10.1016/j.chaos.2016.12.024

Ahmia, M.; Belbachir, H.. (2012). Preserving log-convexity for generalized Pascal triangles, the electronic journal of combinatorics, 19(2), 16, 2012. https://doi.org/10.37236/2255

Becher, V.; Carton, O. (2019). Normal numbers and nested perfect necklaces, Journal of Complexity, 54, 101403, 2019. https://doi.org/10.1016/j.jco.2019.03.003

Blyth, M.G.; Pozrikidis, C. (2006). A lobatto interpolation grid over the triangle, IMA journal of applied mathematics, 71(1), 153-169, 2006. https://doi.org/10.1093/imamat/hxh077

Cao, X.; Deng, Y. (2019). A lobatto interpolation grid over the triangle, IEEE ACCESS, 7(1), 95547-95554, 2019. https://doi.org/10.1109/ACCESS.2019.2928581

Cao, Z; Ding, W.; Wang, Y.-K.; Hussain F., Al-Jumaily, A. Lin, C.-T. (2019). Effects of Repetitive SSVEPs on EEG Complexity using Multiscale Inherent Fuzzy Entropy, Neurocomputing, DOI: 10.1016/j.neucom.2018.08.091, 2019. https://doi.org/10.1016/j.neucom.2018.08.091

Cao, Z.; Lin, C.-T. (2018). Inherent fuzzy entropy for the improvement of EEG complexity evaluation, IEEE Transactions on Fuzzy Systems, 26(2), 1032-1035, 2018. https://doi.org/10.1109/TFUZZ.2017.2666789

Dempster, A.P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, 38(2), 325-339, 1967. https://doi.org/10.1214/aoms/1177698950

Deng, W.; Deng, Y. (2018). Entropic methodology for entanglement measures, Physica A: Statistical Mechanics and its Applications, 512, 693-697, 2018. https://doi.org/10.1016/j.physa.2018.07.044

Deng, X.; Jiang, W. (2019). Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory, International Journal of Fuzzy Systems, 21, 1389-1402, 2019. https://doi.org/10.1007/s40815-019-00639-5

Deng, X.; Jiang, W. (2019). A total uncertainty measure for D numbers based on belief intervals, International Journal of Intelligent Systems, 34(12), 3302-3316, 2019. https://doi.org/10.1002/int.22195

Deng, Y. (2016). Deng Entropy, Chaos, Solitons & Fractals, 91, 549-553, 2016. https://doi.org/10.1016/j.chaos.2016.07.014

Dragan, I.-M.; Isaic-Maniu, A. (2019). An Innovative Model of Reliability-The Pseudo-Entropic Model, Entropy, 21(9), 846, 2019. https://doi.org/10.3390/e21090846

Elmore, P. A.; Petry F.E. Yager, R.R. (2017). Dempster-Shafer Approach to Temporal Uncertainty, IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 316-325, 2017. https://doi.org/10.1109/TETCI.2017.2719711

Fang, R.; Liao, H.; Yang, J.-B., Xu, D.-L. (2019). Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty, Journal of the Operational Research Society, DOI:10.1080/01605682.2019.1654415, 2019. https://doi.org/10.1080/01605682.2019.1654415

Gao, S.; Deng, Y. (2019). An evidential evaluation of nuclear safeguards, International Journal of Distributed Sensor Networks, 15(12), DOI:10.1177/1550147719894550, 2019. https://doi.org/10.1177/1550147719894550

Hacène, B.; Nèmeth, L.; Szalay, L.. (2016). Hyperbolic pascal triangles, Applied Mathematics and Computation, 273, 453-464, 2016. https://doi.org/10.1016/j.amc.2015.10.001

Huang, Z.; Yang, L.; Jiang, W. (2019). Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks, Applied Mathematics and Computation, 347, 417-428, 2019. https://doi.org/10.1016/j.amc.2018.11.036

Hurley, J.; Johnson, C.; Dunham, J.; Simmons, J. (2019). Nonlinear Algorithms for Combining Conflicting Identification Information in Multisensor Fusion, 2019 IEEE Aerospace Conference, 1-7, 2019. https://doi.org/10.1109/AERO.2019.8741967

Jafferis, D. L.; Lewkowycz, A.; Maldacena, J.; Suh, S. J. (2016). Relative entropy equals bulk relative entropy, Journal of High Energy Physics, 2016(6), 4, 2016. https://doi.org/10.1007/JHEP06(2016)004

Jiang, W.; Cao, Y.; Deng, X. (2019). A Novel Z-network Model Based on Bayesian Network and Z-number, IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2019.2918999, 2019. https://doi.org/10.1109/TFUZZ.2019.2918999

Kang, B.; Deng, Y. (2019). The maximum Deng entropy, IEEE ACCESS, 7(1), 120758-120765, 2019. https://doi.org/10.1109/ACCESS.2019.2937679

Karci, A. (2016). Fractional order entropy: New perspectives, Optik, 127(20), 9172-9177, 2016. https://doi.org/10.1016/j.ijleo.2016.06.119

Khan, N.; Anwar, S. (2019). Time-Domain Data Fusion Using Weighted Evidence and Dempster- Shafer Combination Rule: Application in Object Classification, Sensors, 19(23), 5187, 2019. https://doi.org/10.3390/s19235187

Kuzemsky, A. L. (2018). Temporal evolution, directionality of time and irreversibility, Rivista Del Nuovo Cimento, 41(10), 513-574, 2018.

Lee, S.; Jin, M.; Koo, B.; Sin, C.; Kim, S. (2016). Pascal's triangle-based range-free localization for anisotropic wireless networks, Wireless Networks, 22(7), 2221-2238, 2016. https://doi.org/10.1007/s11276-015-1095-9

Li, D.; Deng, Y. (2019). A new correlation coefficient based on generalized information quality, IEEE ACCESS, 7(1), 175411-175419, 2019. https://doi.org/10.1109/ACCESS.2019.2957796

Li, D.; Deng, Y.; Gao, X. (2019). A generalized expression for information quality of basic probability assignment, IEEE ACCESS, 7(1), 174734-174739, 2019. https://doi.org/10.1109/ACCESS.2019.2956956

Li, H.; He, Y.; Nie, X. (2018). Structural reliability calculation method based on the dual neural network and direct integration method, Neural Computing and Applications, 29(7), 425-433, 2018. https://doi.org/10.1007/s00521-016-2554-7

Li, H.; Yuan, R.; Fu, J. (2019). A reliability modeling for multi-component systems considering random shocks and multistate degradation, IEEE ACCESS, 7(1), 168805-168814, 2019. https://doi.org/10.1109/ACCESS.2019.2953483

Li, M.; Deng, Y. (2019). Evidential Decision Tree Based on Belief Entropy, Entropy, 21(9), 897, 2019. https://doi.org/10.3390/e21090897

Li, Y.; Deng, Y. (2019). Intuitionistic evidence sets, IEEE ACCESS, 7(1), 106417-106426, 2019. https://doi.org/10.1109/ACCESS.2019.2932763

Liu, F.; Gao, X.; Zhao, J.; Deng, Y. (2019). Generalized belief entropy and its application in identifying conflict evidence, IEEE ACCESS, 7(1), 126625-126633, 2019. https://doi.org/10.1109/ACCESS.2019.2939332

Liu, P.; Zhang, X. (2019). A Multicriteria Decision-Making Approach with Linguistic D Numbers Based on the Choquet Integral, Cognitive Computation, DOI: 10.1007/s12559-019-09641-3, 2019. https://doi.org/10.1007/s12559-019-09641-3

Liu, P.; Zhang, X.; Wang, Z. (2019). An Extended VIKOR Method for Multiple Attribute Decision Making with Linguistic D Numbers Based on Fuzzy Entropy, International Journal of Information Technology & Decision Making, DOI: 10.1142/S0219622019500433, 2019. https://doi.org/10.1142/S0219622019500433

Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. (2020). A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism, Complexity, DOI: 10.1155/2020/2462647, 2020. https://doi.org/10.1155/2020/2462647

Liu, Y.; Jiang, W. (2019). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making, Complexity, 23, DOI:10.1007/s00500-019-04332-5, 2019. https://doi.org/10.1007/s00500-019-04332-5

Liu, Z.; Deng, Y. (2019). A matrix method of basic belief assignment's negation in Dempster- Shafer theory, IEEE Transactions on Fuzzy Systems, 27, DOI:10.1109/TFUZZ.2019.2930027, 2019. https://doi.org/10.1109/TFUZZ.2019.2930027

Mamb, M. D.; N'Takpe, T.; Anoh, N. G.; Oumtanaga, S. (2018). A New Uncertainty Measure in Belief Entropy Framework, International Journal of Advanced Computer Science and Applications, 9(11), 600-606, 2018. https://doi.org/10.14569/IJACSA.2018.091184

Mi, J.; Li, Y. F.; Beer, M.; Broggi, M.; Cheng, Y. (2020). Importance measure of probabilistic common cause failures under system hybrid uncertainty based on Bayesian network, Eksploatacja i Niezawodnosc-Maintenance and Reliability, 13(22), 112-120, 2020. https://doi.org/10.17531/ein.2020.1.13

Millard, P.; Massou, S.; Portais, J.-C.; Letise, F. (2014). Isotopic studies of metabolic systems by mass spectrometry: using Pascal's triangle to produce biological standards with fully controlled labeling patterns, Analytical chemistry, 86(20), 10288-10295, 2014. https://doi.org/10.1021/ac502490g

Mo, H.; Deng, Y. (2019). Identifying node importance based on evidence theory in complex networks, Physica A: Statistical Mechanics & Its Applications, DOI:10.1016/j.physa.2019.121538, 2019. https://doi.org/10.1016/j.physa.2019.121538

Moussa, A.; Hacène, B. (2012). Preserving log-convexity for generalized Pascal triangles, The electronic journal of combinatorics, 19(2), 16, 2012. https://doi.org/10.37236/2255

Nemeth, L.; Szalay, L. (2018). Power sums in hyperbolic Pascal triangles, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica, 26(1), 189-203, 2018. https://doi.org/10.2478/auom-2018-0012

Ozkan, K. (2018). Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear, Journal of the faculty of forestry- Istanbul University, 68(2), 136-140, 2018.

Pan, L.; Deng, Y. (2020). An association coefficient of belief function and its application in target recognition system, International Journal of Intelligent Systems, 35(1), 85-104, 2020. https://doi.org/10.1002/int.22200

Pan, Y.; Zhang, L.; Li, Z.; Ding, L. (2019). Improved Fuzzy Bayesian Network-Based Risk Analysis With Interval-Valued Fuzzy Sets and D-S Evidence Theory, IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2019.2929024, 2019. https://doi.org/10.1109/TFUZZ.2019.2929024

Qian, H.-M.; Huang, H.-Z.; Li, Y.-F. (2019). A novel single-loop procedure for time-variant reliability analysis based on Kriging model, Applied Mathematical Modelling, 75, 735-748, 2019. https://doi.org/10.1016/j.apm.2019.07.006

Rényi, A. (1961). On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, The Regents of the University of California 1961.

Ristic, B.; Smets, P. (2005). Target classification approach based on the belief function theory, IEEE Transactions on Aerospace and Electronic Systems, 41(2), 574-583, 2005. https://doi.org/10.1109/TAES.2005.1468749

Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos, IEEE Transactions on Aerospace and Electronic Systems, 15(12), 5178-5222, 2013. https://doi.org/10.3390/e15125178

Romagnoli, S. (2019). A vague multidimensional dependency structure: Conditional versus Unconditional fuzzy copula models, IEEE Transactions on Aerospace and Electronic Systems, 512, 1202-1213, 2019. https://doi.org/10.1016/j.ins.2019.10.052

Schubert, J. (2011). Conflict management in Dempster-Shafer theory using the degree of falsity, International Journal of Approximate Reasoning, 52(3), 449-460, 2011. https://doi.org/10.1016/j.ijar.2010.10.004

Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M. (2018). A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach, Journal of Intelligent & Fuzzy Systems, 35(2), 1419-1430, 2018. https://doi.org/10.3233/JIFS-169684

Shafer, G. (1967). A mathematical theory of evidence, Princeton university press, 42, 1967.

Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Li, Z.; Haq, R. (2019). Heat transfer of nanoparticles employing innovative turbulator considering entropy generation, International Journal of Heat and Mass Transfer, 136, 1233-1240, 2019. https://doi.org/10.15837/3735/ijccc.2020.1.3735 9 https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.091

Song, Y.; Deng, Y. (2019). A new soft likelihood function based on power ordered weighted average operator, International Journal of Intelligent Systems, 34(11), 2988-2999, 2019. https://doi.org/10.1002/int.22182

Song, Y.; Deng, Y. (2019). Divergence measure of belief function and its application in data fusion, IEEE ACCESS, 7, 107465-107472, 2019. https://doi.org/10.1109/ACCESS.2019.2932390

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics, Journal of statistical physics, 52(1-2), 479-487, 1988. https://doi.org/10.1007/BF01016429

Tsallis, C.; Gellmann, M.; Sato, Y. (2005). Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive, Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15377-15382, 2005. https://doi.org/10.1073/pnas.0503807102

Tugal, I. (2019). Karcı and Shannon entropies and their effects on centrality of social networks, Physica A: Statistical Mechanics and its Applications, 523, 352-363, 2019. https://doi.org/10.1016/j.physa.2019.02.026

Velarde, C.; Robledo, A. (2015). Pascal (Yang Hui) triangles and power laws in the logistic map, Journal of Physics Conference Series, 604, 012018, 2015. https://doi.org/10.1088/1742-6596/604/1/012018

Wang, H.; Fang, Y.-P.; Zio, E. (2019). Risk Assessment of an Electrical Power System Considering the Influence of Traffic Congestion on a Hypothetical Scenario of Electrified Transportation System in New York Stat, IEEE Transactions on Intelligent Transportation Systems, doi:10.1109/TITS.2019.2955359, 2019. https://doi.org/10.1109/ICSRS.2018.8688718

Wang, D.; Gao, J.; Wei, D. (2019). A New Belief Entropy Based on Deng Entropy, Entropy, 21(10), doi:10.3390/e21100987, 2019. https://doi.org/10.3390/e21100987

Wang, T.; Wang, J.; Ming, J.; Sun, Z.; Wei, C.; Lu, C.; Pérez-Jiménez, M.J. (2018). Application of neural-like P systems with state values for power coordination of photovoltaic/battery microgrids, IEEE ACCESS, 6, 46630-46642, 2018. https://doi.org/10.1109/ACCESS.2018.2865122

Wang, T.; Wei, X.; Huang, T.; Wang, J.; Peng, H.; Pérez-Jiménez, M. J.; Valencia-Cabrera, L. (2019). Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration, IEEE ACCESS, 7, 12798-12808, 2019. https://doi.org/10.1109/ACCESS.2019.2892797

Wang, T.; Wei, X.; Huang, T.; Wang, J.; Valencia-Cabrera, L.; Fan, Z.; Pérez-Jiménez, M. J. (2019). Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids, Complexity, 2019, 7428458, 2019. https://doi.org/10.1155/2019/7428458

Wei, B.; Feng, X.; Yang, S. (2019). Fully Distributed Synchronization of Dynamic Networked Systems with Adaptive Nonlinear Couplings, IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2019.2944971, 2019. https://doi.org/10.1109/TCYB.2019.2944971

Wei, B.; Feng, X.; Yang, S. (2019). Synchronization in Kuramoto Oscillator Networks With Sampled-Data Updating Law, IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2019.2940987, 2019. https://doi.org/10.1109/TCYB.2019.2940987

Wen, T.; Deng, Y. (2020). The vulnerability of communities in complex networks: An entropy approach, Reliability Engineering & System Safety, 196, 106782, 2020. https://doi.org/10.1016/j.ress.2019.106782

Xiao, F. (2019). EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2936368, 2019. https://doi.org/10.1109/TFUZZ.2019.2936368

Xiao, F. (2019). Generalization of Dempster-Shafer theory: A complex mass function, Applied Intelligence, DOI: 10.1007/s10489-019-01617-y, 2019.

Xiao, F. (2020). A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion, Information Sciences, 514, 462-483, 2020. https://doi.org/10.15837/3735/ijccc.2020.1.3735 10 https://doi.org/10.1016/j.ins.2019.11.022

Yager, R.R. (2014). On the maximum entropy negation of a probability distribution, IEEE Transactions on Fuzzy Systems, 23(5), 1899-1902, 2014. https://doi.org/10.1109/TFUZZ.2014.2374211

Yager, R. R. (2019). Generalized Dempster-Shafer Structures, IEEE Transactions on Fuzzy Systems, 27(3), 428-435, 2019. https://doi.org/10.1109/TFUZZ.2018.2859899

Yuan, R.; Tang, M.; Wang, H.; Li, H. (2019). A Reliability Analysis Method of Accelerated Performance Degradation Based on Bayesian Strategy, IEEE Access, 7, 169047-169054, 2019. https://doi.org/10.1109/ACCESS.2019.2952337

Zhao, H.; Xie, Z. (2014). Preliminary study of cellular automat on mobile computing application, Applied Mechanics and Materials, 519, 838-841, 2014. https://doi.org/10.4028/www.scientific.net/AMM.519-520.838

Zhou, M.; Liu, X.;, Chen, Y.; Yang, J. (2018). Evidential reasoning rule for MADM with both weights and reliabilities in group decision making, Knowledge-Based Systems, 143, 142-161, 2018. https://doi.org/10.1016/j.knosys.2017.12.013

Zhou, M.; Liu, X.; Yang, J.; Chen, Y.; Wu, J. (2019). Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment, Knowledge-Based Systems, 163, 358- 375, 2019. https://doi.org/10.1016/j.knosys.2018.08.037

Zurek, W. H. (2018). Complexity, entropy and the physics of information, CRC Press, 2018.

Published

2020-02-03

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.