The Pseudo-Pascal Triangle of Maximum Deng Entropy
Keywords:
Deng entropy, Maximum Deng Entropy, Pascal triangle, Dempster-Shafer evidence theory, basic probability assignment.Abstract
PPascal triangle (known as Yang Hui Triangle in Chinese) is an important model in mathematics while the entropy has been heavily studied in physics or as uncertainty measure in information science. How to construct the the connection between Pascal triangle and uncertainty measure is an interesting topic. One of the most used entropy, Tasllis entropy, has been modelled with Pascal triangle. But the relationship of the other entropy functions with Pascal triangle is still an open issue. Dempster-Shafer evidence theory takes the advantage to deal with uncertainty than probability theory since the probability distribution is generalized as basic probability assignment, which is more efficient to model and handle uncertain information. Given a basic probability assignment, its corresponding uncertainty measure can be determined by Deng entropy, which is the generalization of Shannon entropy. In this paper, a Pseudo-Pascal triangle based the maximum Deng entropy is constructed. Similar to the Pascal triangle modelling of Tasllis entropy, this work provides the a possible way of Deng entropy in physics and information theory.References
Abellán, J.; Mantas, C.J.; Bossé, E.(2019). Basic Properties for Total Uncertainty Measures in the Theory of Evidence, Information Quality in Information Fusion and Decision Making, 99-108, 2019. https://doi.org/10.1007/978-3-030-03643-0_5
Abellán, J.; Mantas, C.J.; Castellano, J. G. (2017). A Random Forest approach using imprecise probabilities, Knowledge-Based Systems, 134, 72-84, 2017. https://doi.org/10.1016/j.knosys.2017.07.019
Abellán, J. (2017). Analyzing properties of Deng entropy in the theory of evidence, Chaos Solitons & Fractals, 95, 195-199, 2017. https://doi.org/10.1016/j.chaos.2016.12.024
Ahmia, M.; Belbachir, H.. (2012). Preserving log-convexity for generalized Pascal triangles, the electronic journal of combinatorics, 19(2), 16, 2012. https://doi.org/10.37236/2255
Becher, V.; Carton, O. (2019). Normal numbers and nested perfect necklaces, Journal of Complexity, 54, 101403, 2019. https://doi.org/10.1016/j.jco.2019.03.003
Blyth, M.G.; Pozrikidis, C. (2006). A lobatto interpolation grid over the triangle, IMA journal of applied mathematics, 71(1), 153-169, 2006. https://doi.org/10.1093/imamat/hxh077
Cao, X.; Deng, Y. (2019). A lobatto interpolation grid over the triangle, IEEE ACCESS, 7(1), 95547-95554, 2019. https://doi.org/10.1109/ACCESS.2019.2928581
Cao, Z; Ding, W.; Wang, Y.-K.; Hussain F., Al-Jumaily, A. Lin, C.-T. (2019). Effects of Repetitive SSVEPs on EEG Complexity using Multiscale Inherent Fuzzy Entropy, Neurocomputing, DOI: 10.1016/j.neucom.2018.08.091, 2019. https://doi.org/10.1016/j.neucom.2018.08.091
Cao, Z.; Lin, C.-T. (2018). Inherent fuzzy entropy for the improvement of EEG complexity evaluation, IEEE Transactions on Fuzzy Systems, 26(2), 1032-1035, 2018. https://doi.org/10.1109/TFUZZ.2017.2666789
Dempster, A.P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, 38(2), 325-339, 1967. https://doi.org/10.1214/aoms/1177698950
Deng, W.; Deng, Y. (2018). Entropic methodology for entanglement measures, Physica A: Statistical Mechanics and its Applications, 512, 693-697, 2018. https://doi.org/10.1016/j.physa.2018.07.044
Deng, X.; Jiang, W. (2019). Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory, International Journal of Fuzzy Systems, 21, 1389-1402, 2019. https://doi.org/10.1007/s40815-019-00639-5
Deng, X.; Jiang, W. (2019). A total uncertainty measure for D numbers based on belief intervals, International Journal of Intelligent Systems, 34(12), 3302-3316, 2019. https://doi.org/10.1002/int.22195
Deng, Y. (2016). Deng Entropy, Chaos, Solitons & Fractals, 91, 549-553, 2016. https://doi.org/10.1016/j.chaos.2016.07.014
Dragan, I.-M.; Isaic-Maniu, A. (2019). An Innovative Model of Reliability-The Pseudo-Entropic Model, Entropy, 21(9), 846, 2019. https://doi.org/10.3390/e21090846
Elmore, P. A.; Petry F.E. Yager, R.R. (2017). Dempster-Shafer Approach to Temporal Uncertainty, IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 316-325, 2017. https://doi.org/10.1109/TETCI.2017.2719711
Fang, R.; Liao, H.; Yang, J.-B., Xu, D.-L. (2019). Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty, Journal of the Operational Research Society, DOI:10.1080/01605682.2019.1654415, 2019. https://doi.org/10.1080/01605682.2019.1654415
Gao, S.; Deng, Y. (2019). An evidential evaluation of nuclear safeguards, International Journal of Distributed Sensor Networks, 15(12), DOI:10.1177/1550147719894550, 2019. https://doi.org/10.1177/1550147719894550
Hacène, B.; Nèmeth, L.; Szalay, L.. (2016). Hyperbolic pascal triangles, Applied Mathematics and Computation, 273, 453-464, 2016. https://doi.org/10.1016/j.amc.2015.10.001
Huang, Z.; Yang, L.; Jiang, W. (2019). Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks, Applied Mathematics and Computation, 347, 417-428, 2019. https://doi.org/10.1016/j.amc.2018.11.036
Hurley, J.; Johnson, C.; Dunham, J.; Simmons, J. (2019). Nonlinear Algorithms for Combining Conflicting Identification Information in Multisensor Fusion, 2019 IEEE Aerospace Conference, 1-7, 2019. https://doi.org/10.1109/AERO.2019.8741967
Jafferis, D. L.; Lewkowycz, A.; Maldacena, J.; Suh, S. J. (2016). Relative entropy equals bulk relative entropy, Journal of High Energy Physics, 2016(6), 4, 2016. https://doi.org/10.1007/JHEP06(2016)004
Jiang, W.; Cao, Y.; Deng, X. (2019). A Novel Z-network Model Based on Bayesian Network and Z-number, IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2019.2918999, 2019. https://doi.org/10.1109/TFUZZ.2019.2918999
Kang, B.; Deng, Y. (2019). The maximum Deng entropy, IEEE ACCESS, 7(1), 120758-120765, 2019. https://doi.org/10.1109/ACCESS.2019.2937679
Karci, A. (2016). Fractional order entropy: New perspectives, Optik, 127(20), 9172-9177, 2016. https://doi.org/10.1016/j.ijleo.2016.06.119
Khan, N.; Anwar, S. (2019). Time-Domain Data Fusion Using Weighted Evidence and Dempster- Shafer Combination Rule: Application in Object Classification, Sensors, 19(23), 5187, 2019. https://doi.org/10.3390/s19235187
Kuzemsky, A. L. (2018). Temporal evolution, directionality of time and irreversibility, Rivista Del Nuovo Cimento, 41(10), 513-574, 2018.
Lee, S.; Jin, M.; Koo, B.; Sin, C.; Kim, S. (2016). Pascal's triangle-based range-free localization for anisotropic wireless networks, Wireless Networks, 22(7), 2221-2238, 2016. https://doi.org/10.1007/s11276-015-1095-9
Li, D.; Deng, Y. (2019). A new correlation coefficient based on generalized information quality, IEEE ACCESS, 7(1), 175411-175419, 2019. https://doi.org/10.1109/ACCESS.2019.2957796
Li, D.; Deng, Y.; Gao, X. (2019). A generalized expression for information quality of basic probability assignment, IEEE ACCESS, 7(1), 174734-174739, 2019. https://doi.org/10.1109/ACCESS.2019.2956956
Li, H.; He, Y.; Nie, X. (2018). Structural reliability calculation method based on the dual neural network and direct integration method, Neural Computing and Applications, 29(7), 425-433, 2018. https://doi.org/10.1007/s00521-016-2554-7
Li, H.; Yuan, R.; Fu, J. (2019). A reliability modeling for multi-component systems considering random shocks and multistate degradation, IEEE ACCESS, 7(1), 168805-168814, 2019. https://doi.org/10.1109/ACCESS.2019.2953483
Li, M.; Deng, Y. (2019). Evidential Decision Tree Based on Belief Entropy, Entropy, 21(9), 897, 2019. https://doi.org/10.3390/e21090897
Li, Y.; Deng, Y. (2019). Intuitionistic evidence sets, IEEE ACCESS, 7(1), 106417-106426, 2019. https://doi.org/10.1109/ACCESS.2019.2932763
Liu, F.; Gao, X.; Zhao, J.; Deng, Y. (2019). Generalized belief entropy and its application in identifying conflict evidence, IEEE ACCESS, 7(1), 126625-126633, 2019. https://doi.org/10.1109/ACCESS.2019.2939332
Liu, P.; Zhang, X. (2019). A Multicriteria Decision-Making Approach with Linguistic D Numbers Based on the Choquet Integral, Cognitive Computation, DOI: 10.1007/s12559-019-09641-3, 2019. https://doi.org/10.1007/s12559-019-09641-3
Liu, P.; Zhang, X.; Wang, Z. (2019). An Extended VIKOR Method for Multiple Attribute Decision Making with Linguistic D Numbers Based on Fuzzy Entropy, International Journal of Information Technology & Decision Making, DOI: 10.1142/S0219622019500433, 2019. https://doi.org/10.1142/S0219622019500433
Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. (2020). A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism, Complexity, DOI: 10.1155/2020/2462647, 2020. https://doi.org/10.1155/2020/2462647
Liu, Y.; Jiang, W. (2019). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making, Complexity, 23, DOI:10.1007/s00500-019-04332-5, 2019. https://doi.org/10.1007/s00500-019-04332-5
Liu, Z.; Deng, Y. (2019). A matrix method of basic belief assignment's negation in Dempster- Shafer theory, IEEE Transactions on Fuzzy Systems, 27, DOI:10.1109/TFUZZ.2019.2930027, 2019. https://doi.org/10.1109/TFUZZ.2019.2930027
Mamb, M. D.; N'Takpe, T.; Anoh, N. G.; Oumtanaga, S. (2018). A New Uncertainty Measure in Belief Entropy Framework, International Journal of Advanced Computer Science and Applications, 9(11), 600-606, 2018. https://doi.org/10.14569/IJACSA.2018.091184
Mi, J.; Li, Y. F.; Beer, M.; Broggi, M.; Cheng, Y. (2020). Importance measure of probabilistic common cause failures under system hybrid uncertainty based on Bayesian network, Eksploatacja i Niezawodnosc-Maintenance and Reliability, 13(22), 112-120, 2020. https://doi.org/10.17531/ein.2020.1.13
Millard, P.; Massou, S.; Portais, J.-C.; Letise, F. (2014). Isotopic studies of metabolic systems by mass spectrometry: using Pascal's triangle to produce biological standards with fully controlled labeling patterns, Analytical chemistry, 86(20), 10288-10295, 2014. https://doi.org/10.1021/ac502490g
Mo, H.; Deng, Y. (2019). Identifying node importance based on evidence theory in complex networks, Physica A: Statistical Mechanics & Its Applications, DOI:10.1016/j.physa.2019.121538, 2019. https://doi.org/10.1016/j.physa.2019.121538
Moussa, A.; Hacène, B. (2012). Preserving log-convexity for generalized Pascal triangles, The electronic journal of combinatorics, 19(2), 16, 2012. https://doi.org/10.37236/2255
Nemeth, L.; Szalay, L. (2018). Power sums in hyperbolic Pascal triangles, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica, 26(1), 189-203, 2018. https://doi.org/10.2478/auom-2018-0012
Ozkan, K. (2018). Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear, Journal of the faculty of forestry- Istanbul University, 68(2), 136-140, 2018.
Pan, L.; Deng, Y. (2020). An association coefficient of belief function and its application in target recognition system, International Journal of Intelligent Systems, 35(1), 85-104, 2020. https://doi.org/10.1002/int.22200
Pan, Y.; Zhang, L.; Li, Z.; Ding, L. (2019). Improved Fuzzy Bayesian Network-Based Risk Analysis With Interval-Valued Fuzzy Sets and D-S Evidence Theory, IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2019.2929024, 2019. https://doi.org/10.1109/TFUZZ.2019.2929024
Qian, H.-M.; Huang, H.-Z.; Li, Y.-F. (2019). A novel single-loop procedure for time-variant reliability analysis based on Kriging model, Applied Mathematical Modelling, 75, 735-748, 2019. https://doi.org/10.1016/j.apm.2019.07.006
Rényi, A. (1961). On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, The Regents of the University of California 1961.
Ristic, B.; Smets, P. (2005). Target classification approach based on the belief function theory, IEEE Transactions on Aerospace and Electronic Systems, 41(2), 574-583, 2005. https://doi.org/10.1109/TAES.2005.1468749
Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos, IEEE Transactions on Aerospace and Electronic Systems, 15(12), 5178-5222, 2013. https://doi.org/10.3390/e15125178
Romagnoli, S. (2019). A vague multidimensional dependency structure: Conditional versus Unconditional fuzzy copula models, IEEE Transactions on Aerospace and Electronic Systems, 512, 1202-1213, 2019. https://doi.org/10.1016/j.ins.2019.10.052
Schubert, J. (2011). Conflict management in Dempster-Shafer theory using the degree of falsity, International Journal of Approximate Reasoning, 52(3), 449-460, 2011. https://doi.org/10.1016/j.ijar.2010.10.004
Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M. (2018). A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach, Journal of Intelligent & Fuzzy Systems, 35(2), 1419-1430, 2018. https://doi.org/10.3233/JIFS-169684
Shafer, G. (1967). A mathematical theory of evidence, Princeton university press, 42, 1967.
Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Li, Z.; Haq, R. (2019). Heat transfer of nanoparticles employing innovative turbulator considering entropy generation, International Journal of Heat and Mass Transfer, 136, 1233-1240, 2019. https://doi.org/10.15837/3735/ijccc.2020.1.3735 9 https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.091
Song, Y.; Deng, Y. (2019). A new soft likelihood function based on power ordered weighted average operator, International Journal of Intelligent Systems, 34(11), 2988-2999, 2019. https://doi.org/10.1002/int.22182
Song, Y.; Deng, Y. (2019). Divergence measure of belief function and its application in data fusion, IEEE ACCESS, 7, 107465-107472, 2019. https://doi.org/10.1109/ACCESS.2019.2932390
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics, Journal of statistical physics, 52(1-2), 479-487, 1988. https://doi.org/10.1007/BF01016429
Tsallis, C.; Gellmann, M.; Sato, Y. (2005). Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive, Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15377-15382, 2005. https://doi.org/10.1073/pnas.0503807102
Tugal, I. (2019). Karcı and Shannon entropies and their effects on centrality of social networks, Physica A: Statistical Mechanics and its Applications, 523, 352-363, 2019. https://doi.org/10.1016/j.physa.2019.02.026
Velarde, C.; Robledo, A. (2015). Pascal (Yang Hui) triangles and power laws in the logistic map, Journal of Physics Conference Series, 604, 012018, 2015. https://doi.org/10.1088/1742-6596/604/1/012018
Wang, H.; Fang, Y.-P.; Zio, E. (2019). Risk Assessment of an Electrical Power System Considering the Influence of Traffic Congestion on a Hypothetical Scenario of Electrified Transportation System in New York Stat, IEEE Transactions on Intelligent Transportation Systems, doi:10.1109/TITS.2019.2955359, 2019. https://doi.org/10.1109/ICSRS.2018.8688718
Wang, D.; Gao, J.; Wei, D. (2019). A New Belief Entropy Based on Deng Entropy, Entropy, 21(10), doi:10.3390/e21100987, 2019. https://doi.org/10.3390/e21100987
Wang, T.; Wang, J.; Ming, J.; Sun, Z.; Wei, C.; Lu, C.; Pérez-Jiménez, M.J. (2018). Application of neural-like P systems with state values for power coordination of photovoltaic/battery microgrids, IEEE ACCESS, 6, 46630-46642, 2018. https://doi.org/10.1109/ACCESS.2018.2865122
Wang, T.; Wei, X.; Huang, T.; Wang, J.; Peng, H.; Pérez-Jiménez, M. J.; Valencia-Cabrera, L. (2019). Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration, IEEE ACCESS, 7, 12798-12808, 2019. https://doi.org/10.1109/ACCESS.2019.2892797
Wang, T.; Wei, X.; Huang, T.; Wang, J.; Valencia-Cabrera, L.; Fan, Z.; Pérez-Jiménez, M. J. (2019). Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids, Complexity, 2019, 7428458, 2019. https://doi.org/10.1155/2019/7428458
Wei, B.; Feng, X.; Yang, S. (2019). Fully Distributed Synchronization of Dynamic Networked Systems with Adaptive Nonlinear Couplings, IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2019.2944971, 2019. https://doi.org/10.1109/TCYB.2019.2944971
Wei, B.; Feng, X.; Yang, S. (2019). Synchronization in Kuramoto Oscillator Networks With Sampled-Data Updating Law, IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2019.2940987, 2019. https://doi.org/10.1109/TCYB.2019.2940987
Wen, T.; Deng, Y. (2020). The vulnerability of communities in complex networks: An entropy approach, Reliability Engineering & System Safety, 196, 106782, 2020. https://doi.org/10.1016/j.ress.2019.106782
Xiao, F. (2019). EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2936368, 2019. https://doi.org/10.1109/TFUZZ.2019.2936368
Xiao, F. (2019). Generalization of Dempster-Shafer theory: A complex mass function, Applied Intelligence, DOI: 10.1007/s10489-019-01617-y, 2019.
Xiao, F. (2020). A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion, Information Sciences, 514, 462-483, 2020. https://doi.org/10.15837/3735/ijccc.2020.1.3735 10 https://doi.org/10.1016/j.ins.2019.11.022
Yager, R.R. (2014). On the maximum entropy negation of a probability distribution, IEEE Transactions on Fuzzy Systems, 23(5), 1899-1902, 2014. https://doi.org/10.1109/TFUZZ.2014.2374211
Yager, R. R. (2019). Generalized Dempster-Shafer Structures, IEEE Transactions on Fuzzy Systems, 27(3), 428-435, 2019. https://doi.org/10.1109/TFUZZ.2018.2859899
Yuan, R.; Tang, M.; Wang, H.; Li, H. (2019). A Reliability Analysis Method of Accelerated Performance Degradation Based on Bayesian Strategy, IEEE Access, 7, 169047-169054, 2019. https://doi.org/10.1109/ACCESS.2019.2952337
Zhao, H.; Xie, Z. (2014). Preliminary study of cellular automat on mobile computing application, Applied Mechanics and Materials, 519, 838-841, 2014. https://doi.org/10.4028/www.scientific.net/AMM.519-520.838
Zhou, M.; Liu, X.;, Chen, Y.; Yang, J. (2018). Evidential reasoning rule for MADM with both weights and reliabilities in group decision making, Knowledge-Based Systems, 143, 142-161, 2018. https://doi.org/10.1016/j.knosys.2017.12.013
Zhou, M.; Liu, X.; Yang, J.; Chen, Y.; Wu, J. (2019). Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment, Knowledge-Based Systems, 163, 358- 375, 2019. https://doi.org/10.1016/j.knosys.2018.08.037
Zurek, W. H. (2018). Complexity, entropy and the physics of information, CRC Press, 2018.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.