Fuzzy Control Design for a Class of Nonlinear Network Control System: Helicopter Case Study
Keywords:
fuzzy control, networked control systemsAbstract
This paper presents a fuzzy control approach to a helicopter MIMO nonlinear system, implemented on a Networked Control System, as case study. For this, a hardware-in-the-Loop implementation is developed using several multi-channel A/D Cards, integrated to a computer network system. Variant time delays are considered over Ethernet and CANBUS networks. Fuzzy logic is used to deal with the complexity of the integrated computer network as well as with the dynamics of the system. Two fuzzy logic control systems are coupled for both signals of the helicopter case study: yaw and pitch. Both these tend to concentrate around desired references, considering variant time delays.
References
J. Abonyi, Fuzzy Model Identification for Control, BirkhÄżËuser, 2003 http://dx.doi.org/10.1007/978-1-4612-0027-7
L. Almeida, P. Pedreiras and J. A.-Fonseca, The FTT-CAN Protocol: Why and How, IEEE ransactions on Industrial Electronics, 49(6):1189-1201, 2002
H. BenÃtez-Pérez and F. GarcÃa-Nocetti, Switching Fuzzy Logic Control for a Reconfigurable ystem Considering Communication Time Delays, Proceedings, CDROM, European Control onference, ECC 03 September, 2003
H. BenÃtez-Pérez and F. GarcÃa-Nocetti, Reconfigurable Distributed Control, Springer Verlag, 005
H. BenÃtez-Pérez, Real-Time Distributed Control A Diverse Approach for Nonlinear Problem, onlinear Analysis: Hybrid Systems and Applications, doi:10.1016/j.nahs.2006.06.004, ol 2/2 pp 474-490, Junio 2008 http://dx.doi.org/10.1016/j.nahs.2006.06.004
H. BenÃtez-Pérez, J. S.-Gonzalez, F. C.-Flores and F. GarcÃa-Nocetti, Fault Classification for Class of Time Variable Systems by using a group of three ART2 Networks, International ournal Control and Intelligent Systems, DOI: 10.2316/Journal.201.2008.1.201-1820, Vol 36, o. 1, 2008 http://dx.doi.org/10.2316/Journal.201.2008.1.201-1820
M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and Fault Tolerant Control, pringer, 2003
A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K. Arzén, How Does Control Timing ffect Performance?, IEEE Control Systems Magazine, Vol. 23, pp. 16-30, 2003 http://dx.doi.org/10.1109/MCS.2003.1200240
T. Frank, K. F.-Kraiss and T. Kuhlen, Comparative Analysis of Fuzzy ART and ART-2A etwork Clustering Performance, IEEE Transactions on Neural Networks, Vol. 9, No. 3, ay 1998
D. Hanselman and B. littlefield, Mastering MATLAB, Prentice Hall, 2002
R. I.-Zamanabadi and M. Blanke, A Ship Propulsion System as a Benchmark for Fault- olerant Control, Control Engineering Practice, Vol. 7, pp. 227-239, 1999 http://dx.doi.org/10.1016/S0967-0661(98)00149-X
J. Jiang, and Q. Zhao, Reconfigurable Control Based on Imprecise Fault Identification, roocedings of the American Control Conference, IEEE, pp. 114-118, San Diego, June, 1999
F. Lian, J. Moyne and D. Tilbury, Network Design Consideration for Distributed Control ystems, IEEE Transactions on Control Systems Technology, Vol. 10, No. 2, pp. 297-307, arch 2002
L. Liu, Real-time Systems, Wiley, 2002
Menendez L. de C. A. and H. BenÃtez-Pérez, Node Availability for Distributed Systems onsidering processor and RAM utilization Based upon a Local Optimization Procedure, NT J COMPUT COMMUN, ISSN 1841-9836, 5(3):336-350, 2010
J. Nilsson, Real-Time Control with Delays, PhD. Thesis, Department of Automatic Control, und Institute of Technology, Sweden, 1998.
H. Thompson, Wireless and Internet Communications Technologies for monitoring and Control, ontrol Engineering Practice, vol. 12, pp. 781-791, 2004
D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Logic Control, pringer-Verlag, 1994
L. Zhang, Y. Shi, T. Chen and B. Huang, A New Method for Stabilization of Networked ontrol Systems with Random Delays, American Control Conference, pp. 633-637, 2005
D. Kim, D. Choi and P. Mohapatra, Real-Time Scheduling method for Networked Discrete ontrol Systems, Control Engineering Practice, Vol 17, pp: 564-570, 2009 http://dx.doi.org/10.1016/j.conengprac.2008.10.006
http://www.quanser.com/english/html/solutions/s_soln_software_wincon.html
Zmaranda D., Gabor G., Popescu D.E., Vancea C., Vancea F., Using Fixed Priority Preemptive cheduling in Real-Time Systems, INT J COMPUT COMMUN, ISSN 1841-9836, (1):187-195, 2011
Dai L., Chang Y., Shen Z.,An Optimal Task Scheduling Algorithm in Wireless Sensor Networks, NT J COMPUT COMMUN, ISSN 1841-9836, 6(1):101-112, 2011
Negoita C.V., Remembering the Beginnings, INT J COMPUT COMMUN, ISSN 1841-9836, (3):458-461, 2011
Nyirenda C.N., Dong F., Hirota K., Distance Based Triggering and Dynamic Sampling Rate stimation for Fuzzy Systems in Communication Networks, INT J COMPUT COMMUN, SSN 1841-9836, 6(3):462-472, 2011
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.