Mathematical Decision Model for Reverse Supply Chains Inventory

Authors

  • Luminita Duta Automation and Computer Science Department Valahia University of Targoviste Romania, 130083, Targoviste, 24, Unirii Ave.
  • Constantin-Bala Zamfirescu Dept. of Computer Science and Automatic Control Lucian Blaga University of Sibiu Romania, 550024, Sibiu, 10, Victoriei Ave.
  • Florin G. Filip The Romanian Academy Romania, Bucharest, 010071, 125 Calea Victoriei

Keywords:

Reverse supply chains, decision aid, inventory models, Bayesian networks

Abstract

In the reverse supply chain inventory theory, inventory models are concerned with the demand of reusable parts, stock replenishment, ordering cycle, delivery lead time, number of disassembled products, ordering costs. The particularity of these models consists in the occurrence of high uncertainties of the quantity and quality of the returned products and resulting parts. To overcome the problem, an inventory model that incorporates decision variables at proactive and reactive levels is derived and discussed in this paper.

References

Gupta S. M. (2013); Reverse Supply Chains: Issues and Analysis, CRC Press, Taylor&Francis

Fleischmann M, Bloemhof-Ruwaard J. M., Dekker R. (1997); Quantitative Models for Reverse Logistics: A Review, European Journal of Operational Research, 103: 1-17. http://dx.doi.org/10.1016/S0377-2217(97)00230-0

Kiesmuller G P, Scherer C W (2003); Computational issues in a stochastic finite horizon one product recovery inventory model, European Journal of Operational Research 146(3): 553-579. http://dx.doi.org/10.1016/S0377-2217(02)00249-7

Inderfurth K, Langella I. M. (2006); Heuristics for solving Disassembly to order Problems with Stochastic Yields, OR Spectrum, 28 (1): 73-99 http://dx.doi.org/10.1007/s00291-005-0007-2

Imtanavanich P, Gupta S. M. (2006); Calculating Disassembly Yields in a Multicriteria Decision Making Environment for a Disassembly to Order System, Application of Management Science, Elsevier Science, Amsterdam, 12: 109-125

Bayindira Z.P., Dekkerb R, Porrasb E. (2006); Determination of recovery effort for a probabilistic recovery system under various inventory control policies, The International Journal of Management Science, 34: 571 - 584.

Inderfurth K, Langella I. M., (2008); Planning Disassembly for Remanufacture to Order Systems, Environment Conscious Manufacturing, Gupta and Lambert eds.,CRC Press, Boca Raton, Fla.

Langella I. M (2007), Planning Demand Driving Disassembly for Remanufacturing, Deutscher Universitäts-Verlag.

Kongar E, Gupta S M, (2009) Solving the Disassembly to Order Problem Using Linear Physical Programming, International Journal of Mathematics in Operational Research, 1(4): 504-531. http://dx.doi.org/10.1504/IJMOR.2009.026279

Gupta, S.M., Ilgin, M. I. (2012), Physical Programming; A review of the state of the art, Studies in Informatics and Control, 21(4): 349-366.

Ahiska S S., King R E (2010); Inventory optimization in a one product recoverable manufacturing system, International Journal of Production Economics, 124(1): 11-19. http://dx.doi.org/10.1016/j.ijpe.2009.09.002

Godichaud M. (2010); Outils d'aide à la décision pour la sélection des filières de revalorisation des produits issus de la déconstruction des systemes en fin de vie. Thèse de doctorat, Université de Toulouse.

Duta L., Addouche S.A. (2012); Dynamic Bayesian Network for Decision Aided Disassembly Planning, Studies in Computational Intelligence, Springer, 402: 143-154.

Blumenfeld, D.E. (2008), Operations Research Calculation Handbook, CRC Press, Taylor and Francis Group.

Ghorbel N., Duta L., Addouche S.A., El Mhamedi A. (2011), Decision aided tool for sustainable inventory control, The 21th International Conference on Production Research, Sttutgart, Germany.

Conrady S, (2011), Introduction to Bayesian Networks, Conrady Applied Science, LLC - Bayesia's North American Partner for Sales and Consulting.

http://www.bayesia.com/en/products/bayesialab.php (last consulted in April 2014)

FICO XPRESS Optimization Suite (http://www.fico.com/en/products/fico-xpressoptimization-suite/)

Filip F.G. (2008), Decision support and control for large-scale complex systems. Annual Reviews in Control, 32(1):61-70. http://dx.doi.org/10.1016/j.arcontrol.2008.03.002

Zamfirescu C.B., Duta L., Iantovics B. (2010),On Investigating the Cognitive Complexity of Designing the Group Decision Process, Studies in Informatics and Control, 19 (3):263-27.

Published

2014-12-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.