Application of Fuzzy Reasoning Spiking Neural P Systems to Fault Diagnosis

Authors

  • Tao Wang School of Electrical Engineering, Southwest Jiaotong University Chengdu, 610031, China
  • Gexiang Zhang School of Electrical Engineering, Southwest Jiaotong University Chengdu, 610031, China
  • Haina Rong School of Electrical Engineering, Southwest Jiaotong University Chengdu, 610031, China
  • Mario J. Pérez-Jiménez Research Group on Natural Computing Department of Computer Science and Artificial Intelligence University of Sevilla, Sevilla, 41012, Spain

Keywords:

fuzzy reasoning spiking neural P system with trapezoidal fuzzy number, fuzzy reasoning, fault diagnosis, trapezoidal fuzzy number, linguistic term

Abstract

This paper discusses the application of fuzzy reasoning spiking neural P systems with trapezoidal fuzzy numbers (tFRSN P systems) to fault diagnosis of power systems, where a matrix-based fuzzy reasoning algorithm based on the dynamic firing mechanism of neurons is used to develop the inference ability of tFRSN P systems from classical reasoning to fuzzy reasoning. Some case studies show the effectiveness of the presented method. We also briefly draw comparisons between the presented method and several main fault diagnosis approaches from the perspectives of knowledge representation and inference process.

References

Păun, G. (2000); Computing with Membranes, J Comput. Syst. Sci., ISSN 0022-0000, 61(1): 108-143.

Ionescu, M.; Păun, G.; Yokomori T. (2006); Spiking Neural P Systems, Fund. Inform., ISSN 0169-2968, 71(2-3): 279-308.

Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. (2013); Fuzzy Reasoning Spiking Neural P System for Fault Diagnosis, Inform. Sciences, ISSN 0020-0255, 235(20): 106-116.

Wang, J.; Shi, P.; Peng, H.; Pérez-Jiménez, M.J.; Wang, T. (2013); Weighted Fuzzy Spiking Neural P Systems, IEEE Trans. on Fuzzy Syst., ISSN 1063-6706, 21(2): 209-220.

Păun, G.; Pérez-Jiménez, M.J.; Rozenberg, G. (2006); Spike Trains in Spiking Neural P Systems, Int. J. Found. Comput. S., ISSN 0129-0541, 17(4): 975-1002.

Cavaliere, M.; Ibarra, O.H.; Păun, G.; Egecioglu, O.; Ionescu, M.; Woodworth, S. (2009); Asynchronous Spiking Neural P Systems, Theor. Comput. Sci., ISSN 0304-3975, 410(24-25): 2352-2364.

Păun, G.; Rozenberg, G.; Salomaa A. (ads.)(2010); The Oxford Handbook of Membrance Computing, Oxford Unversity Press, New York.

Pan, L.Q.; Zeng, X.X. (2011); Small Universal Spiking Neural P Systems Working in Exhaustive Mode, IEEE Trans. on Nanobiosci., ISSN 1536-1241, 10(2): 99-105.

Wang, T.; Wang, J.; Peng, H.; Wang, H. (2011); Knowledge Representation and Reasoning Based on FRSN P System, In: Proc of the 9th World Congress on Intelligent Control and Automation, pp. 849-854.

Knowledge Representation and Reasoning Based on FRSN P System, In: Proc of the 9th World Congress on Intelligent Control and Automation, pp. 849-854.

Zhang, X.Y.; Luo, B.; Fang, X.Y.; Pan, L.Q. (2012); Sequential Spiking Neural P Systems with Exhaustive Use of Rules, BioSystems, ISSN 0303-2647, 108(1-3): 52-62.

Francis G.C.; Henry N.A. (2012); On Structures and Behaviors of Spiking Neural P Systems and Petri Nets, Lecture Notes in Computer Science, ISSN 0302-9743, 7762: 145-160.

Song, T.; Pan, L.Q.; Pˇaun, Gh. (2013); Asynchronous Spiking Neural P Systems with Local Synchronization, Inform. Sciences, ISSN 0020-0255, 219: 197-207.

Xiong, G.J.; Shi, D.Y.; Zhu, L.; Duan, X.Z. (2013); A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems, Math. Probl. Eng., ISSN 1024-123X, vol. 2013: Article ID 815352, 13 pages.

Chen, W.H. (2011); Fault Section Estimation Using Fuzzy Matrix-based Reasoning Methods, IEEE Trans. on Power Deliver., ISSN 0885-8977, 26(1): 205-213.

Chen, S M. (1996); A Fuzzy Reasoning Approach for Rule-based Systems Based on Fuzzy Logics, IEEE Trans. Syst., Man, Cybern., Syst., ISSN 1083-4427, 26(5): 769-778.

Liu, H.C.; Liu, L.; Lin, Q.L.; Liu, N. (2013); Knowledge Acquisition and Representation Using Fuzzy Evidential Reasoning and Dynamic Adaptive Fuzzy Petri Nets, IEEE Trans. on Cybern., ISSN 1083-4419, 43(3): 1059-1072.

Luo, X.; Kezunovic M. (2008); Implementing Fuzzy Reasoning Petri Nets for Fault Section Estimation, IEEE Trans. on Power Syst., ISSN 0885-8950, 23(2): 676-685.

Chen, W.H.; Tsai, S.H.; Lin, H.I. (2011); Fault Section Estimation for Power Networks Using Logic Cause-effect Models, IEEE Trans. on Power Deliver., ISSN 0885-8977, 26(2): 963-971.

The Matlab Website. http://www.mathworks.es/products/matlab/.

Research Group on Natural Computing, University of Seville: The P-Lingua Website. http://www.p-lingua.org.

Research Group on Natural Computing, University of Seville: The MeCoSim Website. http://www.p-lingua.org/mecosim.

Published

2014-12-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.