A Unified Anti-Windup Technique for Fuzzy and Sliding Mode Controllers
Keywords:
Anti-windup technique, electro-hydraulic servo-system, fuzzy control, saturation, sliding mode control, digital simulation.Abstract
This paper proposes the unified treatment of an anti-windup technique for fuzzy and sliding mode controllers. A back-calculation and tracking anti-windup scheme is proposed in order to prevent the zero error integrator wind-up in the structures of state feedback fuzzy controllers and sliding mode controllers. The state feedback sliding mode controllers are based on the state feedback-based computation of the switching variable. An example that copes with the position control of an electro-hydraulic servo-system is presented. The conclusions are pointed out on the basis of digital simulation results for the state feedback fuzzy controller.References
Bohn, C.; Atherton, D. P. (1995); An analysis package comparing PID anti-windup strategies, IEEE Control Systems Magazine, 15(2):34-40.
Peng, Y.; VranÄić, D.; Hanus, R.; Weller, S. S. R. (1998); Anti-windup designs for multivariable controllers, Automatica, 34(12):1559-1565.
Tharayil, M.; Alleyne, A. (2002); A generalized PID error governing scheme for SMART/SBLI control, Proceedings of 2002 American Control Conference, Anchorage, AK, USA, 1:346-351.
Åström, K. J.; Hägglund, T. (2006); Advanced PID Control, Instrument Society of America, Research Triangle Park, NC.
Wu, X.; Lin, Z. (2012); On immediate, delayed and anticipatory activation of anti-windup mechanism: Static anti-windup case, IEEE Transactions on Automatic Control, 57(3):771- 777.
Fišer, J.; Å ulc, B. (2001); Sliding mode control design with anti wind-up, Proceedings of XXVI. ASR'2001 Seminar, Instruments and Control, Ostrava, Czech Republic, Paper ID 17:1-8.
Herrmann, G.; Turner, M. C.; Postlethwaite, I; Guo G. (2004); Practical implementation of a novel anti-windup scheme in a HDD-dual-stage servo-system, IEEE/ASME Transactions on Mechatronics, 9(3):580-592.
Kanamori, M.; Iwagami, K. (2014); Novel anti-windup PID controller design under holonomic endpoint constraints for Euler-Lagrange systems with actuator saturation, Preprints of 19th IFAC World Congress, Cape Town, South Africa, pp. 9321-9326.
Chiang, H.-H.; Hsu, K.-C.; Li I.-H. (2015); Optimized adaptive motion control through an SoPC implementation for linear induction motor drives, IEEE/ASME Transactions on Mechatronics, 20(1):348-360.
Septanto, H.; Syaichu-Rohman, A.; Mahayana, D. (2011); Static anti-windup compensator design of linear sliding mode control for input saturated systems, Proceedings of 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, pp. 1-4.
Yokoyama, M.; Kim, G.-N.; Tsuchiya, M. (2012); Integral sliding mode control with antiwindup compensation and its application to a power assist system, Journal of Vibration and Control, 16(4):503-512.
Lee, J. M.; Park, S. H.; Kim, J. S. (2013); Design and experimental evaluation of a robust position controller for an electrohydrostatic actuator using adaptive antiwindup sliding mode scheme, The Scientific World Journal, Vol. 2013, Article ID 590708, pp. 1-16.
Zaafouri, C.; Garcia, G. (2013); Comparative study of the saturated sliding mode and antiwindup controllers, Proceedings of 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, pp. 1-6.
Preitl, S.; Precup, R.-E. (1995); On the opportunity of ARW measures in fuzzy control, in: Real World Applications of Intelligent Technologies, H.-J. Zimmermann, M. G. Negoita, D. Dascalu, Eds., Editura Academiei Romane, Bucharest, pp. 149-153.
Zhang, T.; Feng, G.; Liu, H.; Lu, J. (2009); Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations, IEEE Transactions on Fuzzy Systems, 17(2):253-264 .
Ting, C.-S.; Chang, Y.-N. (2011); Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations, Information Sciences, 181(15):3225-3245.
Precup, R.-E.; Preitl, S. (1997); Popov-type stability analysis method for fuzzy control systems, Proceedings of Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, (2):1306-1310.
Precup, R.-E.; Preitl, S. (1999); Fuzzy Controllers, Editura Orizonturi Universitare, TimiÅŸoara, 1999.
Precup, R.-E.; Preitl, S.; Balas, M.; Balas, V. (2004); Fuzzy controllers for tire slip control in anti-lock braking systems, Proceedings of IEEE International Conference on Fuzzy Systems, Budapest, Hungary, (3):1317-1322.
Precup, R.-E.; Preitl, S. (2006); Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications, Acta Polytechnica Hungarica, 3(1):61-76.
Tomescu, M. L.; Preitl, S.; Precup, R.-E.; Tar, J. K. (2007); Stability analysis method for fuzzy control systems dedicated controlling nonlinear processes, Acta Polytechnica Hungarica, 4(3):127-141.
Precup, R.-E.; Tomescu, M. L.; Preitl, S. (2009); Fuzzy logic control system stability analysis based on Lyapunov's direct method, International Journal of Computers, Communications & Control, 4(4):415-426.
Precup, R.-E.; Tomescu, M. L.; Radac, M.-B.; Petriu, E. M.; Preitl, S.; Dragos, C.-A. (2012); Iterative performance improvement of fuzzy control systems for three tank systems, Expert Systems with Applications, 39(9):8288-8299.
Precup, R.-E.; Radac, M.-B.; Tomescu, M. L.; Petriu, E. M.; Preitl, S. (2013); Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems, Expert Systems with Applications, 40(1):188-199.
Precup, R.-E.; David, R.-C.; Petriu, E. M.; Radac, M.-B.; Preitl, S. (2014); Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness, IEEE Transactions on Cybernetics, 44(11):1997-2009.
Zadeh, L. A. (1974); Fuzzy logic and its application to approximate reasoning, Proceedings of IFIP Congress 74, Stockholm, Sweden, pp. 591-594.
Zadeh, L. A. (1994); Fuzzy logic: issues, contentions and perspectives, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP94, Adelaide, SA, Australia, pp. 183-184.
Zadeh, L. A. (2013); Stochastic finite-state systems in control theory, Information Sciences, 251:1-9.
Mitroi, F. C.; Minculete, N. (2013); Mathematical inequalities for biparametric extended information measures, Journal of Mathematical Inequalities, 7(1):63-71.
Nădăban, S.; Dzitac, I, (2014); Atomic decompositions of fuzzy normed linear spaces for wavelet applications, Informatica, 25(4):643-662.
Gál, L.; Lovassy, R.; Rudas, I. J.; Kóczy, L. T. (2014); Learning the optimal parameter of the Hamacher t-norm applied for fuzzy-rule-based model extraction, Neural Computing and Applications, 24(1):133-142.
Nădăban, S. (2015); Fuzzy Euclidean normed spaces for data mining applications, International Journal of Computers, Communications & Control, 10(1):70-77.
Nădăban, S. (2014); Fuzzy pseudo-norms and fuzzy F-spaces, Fuzzy Sets and Systems, DOI: 10.1016/j.fss.2014.12.010. http://dx.doi.org/10.1016/j.fss.2014.12.010
Nădăban, S.; Dzitac, I (2014); Special Types of Fuzzy Relations, Procedia Computer Science, 31C:552-557.
Å krjanc, I; BlažiÄ, S.; Agamennoni, O. E. (2005); Interval fuzzy model identification using l1-norm, IEEE Transactions on Fuzzy Systems, 13(5):561-568.
Johanyćk, Z.C. (2010); Survey on five fuzzy inference-based student evaluation methods, in: Computational Intelligence in Engineering, I. J. Rudas, J. Fodor, J. Kacprzyk, Eds., Studies in Computational Intelligence, Springer-Verlag, Berlin, Heidelberg, Vol. 313, pp. 219-228. http://dx.doi.org/10.1007/978-3-642-15220-7_18
VašÄák, J. (2010); Approaches in adaptation of fuzzy cognitive maps for navigation purposes, Proceedings of 8th International Symposium on Applied Machine Intelligence and Informatics, Heržany, Slovakia, pp. 31-36, 2010.
Linda, O.; Manic, M. (2011); Interval type-2 fuzzy voter design for fault tolerant systems, Information Sciences, 181(14):2933-2950.
Dragos, C.-A.; Precup, R.-E.; Tomescu, M. L.; Preitl, S.; Petriu, E. M.; Radac, M.-B. (2013); An approach to fuzzy modeling of electromagnetic actuated clutch systems, International Journal of Computers, Communications & Control, 8(3):395-406.
Teodorescu, H.-N. L. (2013); On the characteristic functions of fuzzy systems, International Journal of Computers, Communications & Control, 8(3):469-476.
Jafarian, A. ( 2014); New artificial intelligence approach for solving fuzzy polynomial equations, International Journal of Artificial Intelligence, 12(2):57-74.
Baranyi, P.; Tikk, D.; Yam, Y.; Patton, R. J. (2003); From differential equations to PDC controller design via numerical transformation, Computers in Industry, 51(3):281-297.
Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K. (2011); Experiment-based teaching in advanced control engineering, IEEE Transactions on Education, 54(3):345-355.
Precup, R.-E.; Dragos, C.-A.; Preitl, S.; Radac, M.-B.; Petriu, E. M. (2012); Novel tensor product models for automatic transmission system control, IEEE Systems Journal, 6(3):488- 498.
Angelov, P.; Yager, R. (2013); Density-based averaging - A new operator for data fusion, Information Systems, 222:163-174.
Bălănică, V.; Dumitrache, I.; Preziosi, L. (2013); Breast cancer diagnosis based on spiculation feature and neural network techniques, International Journal of Computers, Communications & Control, 8(3):354-365.
Osaba, E.; Diaz, F.; Onieva, E.; Carballedo, R.; Perallos, A. (2014); AMCPA: A population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems, International Journal of Artificial Intelligence, 12(2):1- 23.
Popescu, D.; Cirstoiu, S. (2014); A simulator for the multi-model control of Diesel engines, Studies in Informatics and Control, 23(4):381-386.
Yu, X.; Kaynak, O. (2009); Sliding-mode control with soft computing: A survey, IEEE Transactions on Industrial Electronics, 56(9):3275-3285.
Antić, D.; Milojković, M.; Jovanović, Z.; Nikolić, S. (2010); Optimal design of the fuzzy sliding mode control for a DC servo drive, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8):455-463.
Al-Hadithi, B. M.; Barragán, A. J.; Andújar, J. M.;Jiménez, A. (2013); Variable structure control with chattering elimination and guaranteed stability for a generalized T-S model, Applied Soft Computing, 13(12):4802-4812.
Milosavljević, C.; Perunicić-Drazenović, B. Veselić, B. (2013); Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation, IEEE Transactions on Industrial Informatics, 9(2):920-927.
Liu, Z.; Su, H.; Pa, S. (2014); A new adaptive sliding mode control of uncertain nonlinear systems, Asian Journal of Control,16(1):198-208.
Filip, F.-G.; Leiviskä, K. (2009); Large-scale complex systems, in: Springer Handbook of Automation, S. Y. Nof, Ed., Springer-Verlag, Berlin, Heidelberg, pp. 619-638. http://dx.doi.org/10.1007/978-3-540-78831-7_36
Precup, R.-E.; David, R.-C.; Petriu, E. M.; Preitl, S.; Paul, A. S. (2011); Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity, in: Soft Computing in Industrial Applications, A. Gaspar-Cunha, R. Takahashi, G. Schaefer, L. Costa, Eds., Springer-Verlag, Berlin, Heidelberg, Advances in Intelligent and Soft Computing, Vol. 96, pp. 141-150. http://dx.doi.org/10.1007/978-3-642-20505-7_12
Penedo, F.; Haber, R. E.; Gajate, A.; del Toro, R. M. (2012); Hybrid incremental modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes, IEEE Transactions on Industrial Informatics, 8(4):811-818.
Barchinezhad, S.; Eftekhari, M. (2014); A new fuzzy and correlation based feature selection method for multiclass problems, International Journal of Artificial Intelligence, 12(2):24-41.
Astudillo, L.; Melin, P.; Castillo, O. (2015); Introduction to an optimization algorithm based on the chemical reactions, Information Sciences, 291:85-95.
Bühler, H. (1986); Réglage par mode de glissement, Presses Polytechniques Romandes, Lausanne.
Utkin, V. I. (1997); Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, AC-22(2):212-222.
Precup, R.-E.; Hellendoorn, H. (2011); A survey on industrial applications of fuzzy control, Computers in Industry, 62(3):213-226.
Preitl, S.; Precup, R.-E. (1993); Anti-Reset-Windup (ARW) structure for speed control of hydrogenerators, Proceedings of CSCS-9 International Conference, Bucharest, Romania, 2:390-397.
Preitl, S. (1986); Aspects concerning the algorithmic design of electro-hydraulic servosystems for speed controllers, Proceedings of CCSITEH National Symposium, Timisoara, Romania, pp. 143-149 (in Romanian).
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.