Fuzzy Szpilrajn Theorem through Indicators

Authors

  • Irina Georgescu Academy of Economic Studies Department of Economic Cybernetics Piata Romana No 6, R 70167, Oficiul Postal 22 Bucharest, Romania

Keywords:

fuzzy relation, Szpilrajn theorem, similarity

Abstract

In this paper there are studied some numerical indicators which measure the degree to which a fuzzy relation verifies some properties (reflexivity, transitivity, etc. ).The main result is a fuzzy generalization of the Szpilrajn theorem in terms of such numerical indicators and is applied to any fuzzy relation.

References

R. Belohlávek, Fuzzy Relational Systems. Foundations and Principles, Kluwer, 2002. http://dx.doi.org/10.1007/978-1-4615-0633-1

U. Bodenhofer, Similarity-based Generalizations of Fuzzy Orderings Preserving the Classical Ax- ioms, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, Vol. 3, pp. 593-610, 2000. http://dx.doi.org/10.1142/S0218488500000411

U. Bodenhofer, F. Klawonn, A Formal Study of Linearity Axioms for Fuzzy Orderings, Fuzzy Sets and Systems, Vol. 145, pp. 323-354, 2004. http://dx.doi.org/10.1016/S0165-0114(03)00128-3

S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg, Braunschweig, 1993. http://dx.doi.org/10.1007/978-3-322-86812-1

P. Hájek, Methamathematics of Fuzzy Logic, Kluwer, 1998. http://dx.doi.org/10.1007/978-94-011-5300-3

U. Höhle, N. Blanchard, Partial Ordering in L-undeterminate sets, Information Sciences, Vol. 35, pp. 135-144, 1985. http://dx.doi.org/10.1016/0020-0255(85)90045-3

E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, 2000. http://dx.doi.org/10.1007/978-94-015-9540-7

M. Richter, Revealed Preference Theory, Econometrica, Vol. 34, pp. 635-645, 1966. http://dx.doi.org/10.2307/1909773

I. J. Rudas, J. Fodor, Information Aggregation in Intelligent Systems using Generalized Operators, International Journal of Computers, Communications and Control, Vol. 1, pp. 47-57, 2006. http://dx.doi.org/10.15837/ijccc.2006.1.2272

E. Szpilrajn, Sur l'Extension de l'Ordre Partiel, Fundamenta Mathematicae, Vol. 16, pp. 386-389, 1930.

L. A. Zadeh, Similarity Relations and Fuzzy Orderings, Information Sciences, Vol. 3, pp. 177-200, 1971. http://dx.doi.org/10.1016/S0020-0255(71)80005-1

Published

2008-12-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.