Stochastic Stability Analysis of Power Control in Wireless Networks via a Norm-inequality-based Approach

Authors

  • Rongrong Qian Beijing Univ. of Posts and Telecommunications (BUPT) Beijing, 100876, China
  • Yuan Qi Beijing Univ. of Posts and Telecommunications (BUPT) Beijing, 100876, China

Keywords:

wireless networks, power control, stochastic stability

Abstract

Owing to the requirements from realistic wireless networks, the stochastic stability analysis for discrete-time power control, which concerns the randomness brought by the fading channels and noise of wireless systems, is of practical significance. By developing a norm-inequality-based framework of analyzing the stochastic stability of linear systems with random parameters, we show that a typical powercontrol law with linear system model is stable in the sense of the pth-moment stability. Several conditions of achieving the pth-moment stability for the considered power-control law are obtained, which can easily applied to realistic wireless networks. Besides, within this study, the stability analysis of power control for the first time takes into account the effect of multiple-access methods.

References

C.W. Sung, K.K. Leung (2005); A Generalized framework for distributed power control in wireless networks, IEEE Trans. Inf. Theory, 51(7): 2625-2635. http://dx.doi.org/10.1109/TIT.2005.850045

H. Feyzmahdavian, M. Johansson,T. Charalambous (2012); Contractive interference functions and rates of convergence of distributed power control laws, IEEE Trans. Wireless Commun., 11(12):4494-4502. http://dx.doi.org/10.1109/TWC.2012.102512.120101

H. Feyzmahdavian, T. Charalambous, and M. Johansson (2014); Stability and performance of continuous-time power control in wireless networks, IEEE Trans. Automat. Contr., 59(8):2012-2023. http://dx.doi.org/10.1109/TAC.2014.2314951

I. Lestas (2012); Power control in wireless networks: Stability and delay independence for a general class of distributed algorithms, IEEE Trans. Automat. Contr., 57(5):1253-1258. http://dx.doi.org/10.1109/TAC.2011.2173776

E. Devane and I. Lestas (2014); Stability of a general class of distributed algorithms for power control in time-varying wireless networks, IEEE Trans. Automat. Contr., 59(8):1999-2011. http://dx.doi.org/10.1109/TAC.2014.2315551

S. Ulukus, R. Yates (1998); Stochastic power control for cellular radio systems, IEEE Trans. Commun., 46(6):784-798. http://dx.doi.org/10.1109/26.681417

M. Varanasi, D. Das (2002); Fast stochastic power control algorithms for nonlinear multiuser receivers, IEEE Trans. Commun., 50(11):1817-1827. http://dx.doi.org/10.1109/TCOMM.2002.805274

J. Lu, S. Ulukus,A. Ephremides (2005); Standard and quasi-standard stochastic power control algorithms, IEEE Trans. Inf. Theory, 51(7):2612-2624. http://dx.doi.org/10.1109/TIT.2005.850105

H. Zhang, W. S. Wong, W. Ge, P. E. Caines (2007); A stochastic approximation approach to the power-control problem, IEEE Trans. Commun., 55(8): 878-886.

X. Feng, K A. Loparo, Y. Ji, H. J. Chizeck (1992); Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Contr., 37(1):38-53. http://dx.doi.org/10.1109/9.109637

J. Leth, H. Schioler, M. Gholami, V. Cocquempot (2013); Stochastic stability of Markovianly switched systems, IEEE Trans. Automat. Contr., 58(8): 2048-2054. http://dx.doi.org/10.1109/TAC.2013.2241482

G. J. Foschini and Z. Miljanic (1993); A simple distributed autonomous power control algorithm and its convergence, IEEE Trans. Vehic. Technol., 42: 641-646.

M. Xiao, N. Shroff, and E. Chong (2003); A utility-based power-control scheme in wireless cellular systems, IEEE J. Sel. Areas Commun., 11(2):210-221.

H. Furstenberg, H. Kesten (1960); Products of random matrices, Annals of mathematical statistics, 31(2):457-469. http://dx.doi.org/10.1214/aoms/1177705909

A. Bobrowski (2005); Functional analysis for probability and stochastic processes, Cambridge Universtity Press, 2005.

W. L. D. Koning (1984); Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20(1):113-115. http://dx.doi.org/10.1016/0005-1098(84)90071-2

N. J. Higham (1992); Estimating the matrix p-norm, Numer. Math, 62:511-538. http://dx.doi.org/10.1007/BF01396242

T. Taniguchi (1990); Stability theorems of stochastic difference equations, Journal of Mathematical Analysis and Applications, 147(1):81-96. http://dx.doi.org/10.1016/0022-247X(90)90386-T

L. Xua, S. S. Geb (2015); The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Applied Mathematics Letters, 42:22-29. http://dx.doi.org/10.1016/j.aml.2014.10.018

J. Yang, W. Zhou, X. Yang, X. Hu, L. Xie (2015); pth moment asymptotic stability of stochastic delayed hybrid systems with Levy noise, International Journal of Control, 88(9):1726-1734. http://dx.doi.org/10.1080/00207179.2015.1014852

T. Charalambous, I. Lestas, G. Vinnicombe (2008); On the stability of the Foschini-Miljanic algorithm with time-delays, in Proc. 47th IEEE Conf. on Decision Control, 2991-2996.

M. Varanasi (1999); Nonlinear multiuser receivers with distributed power control in cellular radio networks, in Proc. 37th Annu. Allerton Conf. Communication, Control and Computers, 820-830.

R. A. Horn and C. R. Johnson (1985); Matrix analysis, Cambridge University Press, Second Edition, 1985.

R. Durrett (2005); Probability: Theory and examples, Cengage Learning, Third Edition, 2005.

I. S. Gradshteyn, I. M. Ryzhik (2007); Table of integrals, series, and products, 7th edition, Academic, 2007.

Published

2016-10-17

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.