Stochastic Stability Analysis of Power Control in Wireless Networks via a Norm-inequality-based Approach
Keywords:
wireless networks, power control, stochastic stabilityAbstract
Owing to the requirements from realistic wireless networks, the stochastic stability analysis for discrete-time power control, which concerns the randomness brought by the fading channels and noise of wireless systems, is of practical significance. By developing a norm-inequality-based framework of analyzing the stochastic stability of linear systems with random parameters, we show that a typical powercontrol law with linear system model is stable in the sense of the pth-moment stability. Several conditions of achieving the pth-moment stability for the considered power-control law are obtained, which can easily applied to realistic wireless networks. Besides, within this study, the stability analysis of power control for the first time takes into account the effect of multiple-access methods.References
C.W. Sung, K.K. Leung (2005); A Generalized framework for distributed power control in wireless networks, IEEE Trans. Inf. Theory, 51(7): 2625-2635. http://dx.doi.org/10.1109/TIT.2005.850045
H. Feyzmahdavian, M. Johansson,T. Charalambous (2012); Contractive interference functions and rates of convergence of distributed power control laws, IEEE Trans. Wireless Commun., 11(12):4494-4502. http://dx.doi.org/10.1109/TWC.2012.102512.120101
H. Feyzmahdavian, T. Charalambous, and M. Johansson (2014); Stability and performance of continuous-time power control in wireless networks, IEEE Trans. Automat. Contr., 59(8):2012-2023. http://dx.doi.org/10.1109/TAC.2014.2314951
I. Lestas (2012); Power control in wireless networks: Stability and delay independence for a general class of distributed algorithms, IEEE Trans. Automat. Contr., 57(5):1253-1258. http://dx.doi.org/10.1109/TAC.2011.2173776
E. Devane and I. Lestas (2014); Stability of a general class of distributed algorithms for power control in time-varying wireless networks, IEEE Trans. Automat. Contr., 59(8):1999-2011. http://dx.doi.org/10.1109/TAC.2014.2315551
S. Ulukus, R. Yates (1998); Stochastic power control for cellular radio systems, IEEE Trans. Commun., 46(6):784-798. http://dx.doi.org/10.1109/26.681417
M. Varanasi, D. Das (2002); Fast stochastic power control algorithms for nonlinear multiuser receivers, IEEE Trans. Commun., 50(11):1817-1827. http://dx.doi.org/10.1109/TCOMM.2002.805274
J. Lu, S. Ulukus,A. Ephremides (2005); Standard and quasi-standard stochastic power control algorithms, IEEE Trans. Inf. Theory, 51(7):2612-2624. http://dx.doi.org/10.1109/TIT.2005.850105
H. Zhang, W. S. Wong, W. Ge, P. E. Caines (2007); A stochastic approximation approach to the power-control problem, IEEE Trans. Commun., 55(8): 878-886.
X. Feng, K A. Loparo, Y. Ji, H. J. Chizeck (1992); Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Contr., 37(1):38-53. http://dx.doi.org/10.1109/9.109637
J. Leth, H. Schioler, M. Gholami, V. Cocquempot (2013); Stochastic stability of Markovianly switched systems, IEEE Trans. Automat. Contr., 58(8): 2048-2054. http://dx.doi.org/10.1109/TAC.2013.2241482
G. J. Foschini and Z. Miljanic (1993); A simple distributed autonomous power control algorithm and its convergence, IEEE Trans. Vehic. Technol., 42: 641-646.
M. Xiao, N. Shroff, and E. Chong (2003); A utility-based power-control scheme in wireless cellular systems, IEEE J. Sel. Areas Commun., 11(2):210-221.
H. Furstenberg, H. Kesten (1960); Products of random matrices, Annals of mathematical statistics, 31(2):457-469. http://dx.doi.org/10.1214/aoms/1177705909
A. Bobrowski (2005); Functional analysis for probability and stochastic processes, Cambridge Universtity Press, 2005.
W. L. D. Koning (1984); Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20(1):113-115. http://dx.doi.org/10.1016/0005-1098(84)90071-2
N. J. Higham (1992); Estimating the matrix p-norm, Numer. Math, 62:511-538. http://dx.doi.org/10.1007/BF01396242
T. Taniguchi (1990); Stability theorems of stochastic difference equations, Journal of Mathematical Analysis and Applications, 147(1):81-96. http://dx.doi.org/10.1016/0022-247X(90)90386-T
L. Xua, S. S. Geb (2015); The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Applied Mathematics Letters, 42:22-29. http://dx.doi.org/10.1016/j.aml.2014.10.018
J. Yang, W. Zhou, X. Yang, X. Hu, L. Xie (2015); pth moment asymptotic stability of stochastic delayed hybrid systems with Levy noise, International Journal of Control, 88(9):1726-1734. http://dx.doi.org/10.1080/00207179.2015.1014852
T. Charalambous, I. Lestas, G. Vinnicombe (2008); On the stability of the Foschini-Miljanic algorithm with time-delays, in Proc. 47th IEEE Conf. on Decision Control, 2991-2996.
M. Varanasi (1999); Nonlinear multiuser receivers with distributed power control in cellular radio networks, in Proc. 37th Annu. Allerton Conf. Communication, Control and Computers, 820-830.
R. A. Horn and C. R. Johnson (1985); Matrix analysis, Cambridge University Press, Second Edition, 1985.
R. Durrett (2005); Probability: Theory and examples, Cengage Learning, Third Edition, 2005.
I. S. Gradshteyn, I. M. Ryzhik (2007); Table of integrals, series, and products, 7th edition, Academic, 2007.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.