Automatic Generation Control by Hybrid Invasive Weed Optimization and Pattern Search Tuned 2-DOF PID Controller
Keywords:
Automatic generation control, interconnected power system, governor, dead - band non linearity, 2 degree of freedom PID controller, invasive weed optimization, pattern searchAbstract
A hybrid invasive weed optimization and pattern search (hIWO-PS) technique is proposed in this paper to design 2 degree of freedom proportionalintegral- derivative (2-DOF-PID) controllers for automatic generation control (AGC) of interconnected power systems. Firstly, the proposed approach is tested in an interconnected two-area thermal power system and the advantage of the proposed approach has been established by comparing the results with recently published methods like conventional Ziegler Nichols (ZN), differential evolution (DE), bacteria foraging optimization algorithm (BFOA), genetic algorithm (GA), particle swarm optimization (PSO), hybrid BFOA-PSO, hybrid PSO-PS and non-dominated shorting GA-II (NSGA-II) based controllers for the identical interconnected power system. Further, sensitivity investigation is executed to demonstrate the robustness of the proposed approach by changing the parameters of the system, operating loading conditions, locations as well as size of the disturbance. Additionally, the methodology is applied to a three area hydro thermal interconnected system with appropriate generation rate constraints (GRC). The superiority of the presented methodology is demonstrated by presenting comparative results of adaptive neuro fuzzy inference system (ANFIS), hybrid hBFOA-PSO as well as hybrid hPSO-PS based controllers for the identical system.
References
Ali E.S., Abd-Elazim S.M.(2011), Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, International Journal of Electric Power & Energy Systems, 33, 633 - 638, 2011. https://doi.org/10.1016/j.ijepes.2010.12.022
Barisal A.K. (2015), Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-sources power systems, International Journal of Electric Power & Energy Systems, 66, 67 - 77, 2015. https://doi.org/10.1016/j.ijepes.2014.10.019
Barisal A.K., Prusty R.C. (2015), Large scale economic dispatch of power systems using oppositional invasive weed optimization, Applied Soft Computing, 29, 122-137, 2015. https://doi.org/10.1016/j.asoc.2014.12.014
Dolan E.D., Lewis R.M., Torczon V. (2003), On the local convergence of pattern search, SIAM Journal of Optimization, 14, 567-583, 2003. https://doi.org/10.1137/S1052623400374495
Elgerd O.I. (2000), Electric Energy Systems Theory - An Introduction, Tata McGraw Hill, New Delhi, India, 2000.
Farhangi R., Boroushaki M., Hosseini S.H. (2012), Load frequency control of inter- connected power system using emotional learning based intelligent controller, International Journal of Electric Power & Energy Systems, 36, 76-83, 2012. https://doi.org/10.1016/j.ijepes.2011.10.026
Gozde H., Taplamacioglu M.C. (2011), Automatic generation control application with craziness based particle swarm optimization in a thermal power system, International Journal of Electric Power & Energy Systems, 33, 8-16, 2011. https://doi.org/10.1016/j.ijepes.2010.08.010
Gozde H., Taplamacioglu M.C., Kocaarslan I. (2012), Comparative performance analysis of Artificial Bee Colony algorithm in automatic generation control for interconnected reheat thermal power system, International Journal of Electric Power & Energy Systems, 42, 167- 178, 2012. https://doi.org/10.1016/j.ijepes.2012.03.039
Karimkashi S., Ahmed A.K. (2010), Invasive weed optimization and its features in electromagnetics, IEEE Trans Antenna Propagation, 58, 1269-1278, 2010. https://doi.org/10.1109/TAP.2010.2041163
Khuntia S.R., Panda S. (2012); Simulation study for automatic generation control of a multi-area power system by ANFIS approach, Applied Soft Computing, 12, 333-341, 2012. https://doi.org/10.1016/j.asoc.2011.08.039
Kundur P. (2009), Power System Stability and Control, Tata McGraw Hill, New Delhi, India, 2009.
Mehrabian A.R., Lucas C. (2006), A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1, 355-366, 2006. https://doi.org/10.1016/j.ecoinf.2006.07.003
Mohamadreza A., Hamed M., Roozbeh I.Z. (2012), State estimation of nonlinear stochastic systems using a novel meta-heuristic particle filter, Swarm Evolutionary Computation, 4, 44-53, 2012. https://doi.org/10.1016/j.swevo.2011.11.004
Mohanty B., Panda S., Hota P.K. (2014), Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system, International Journal of Electric Power & Energy Systems, 54, 77-85, 2014. https://doi.org/10.1016/j.ijepes.2013.06.029
Naidu K., Mokhlis H., Bakar A.H.A., Terzija V., Illias H.A. (2014), Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected reheat thermal power system, International Journal of Electric Power & Energy Systems, 63, 401-413, 2014. https://doi.org/10.1016/j.ijepes.2014.05.055
Panda S., Mohanty B., Hota P.K. (2013), Hybrid BFOA-PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems, Applied Soft Computing, 13, 4718-4730, 2013. https://doi.org/10.1016/j.asoc.2013.07.021
Panda S., Yegireddy N.K. (2013), Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II, International Journal of Electric Power & Energy Systems, 53, 54-63, 2013. https://doi.org/10.1016/j.ijepes.2013.04.003
Rad S.H., Lucas, C. (2007), A recommender system based on invasive weed optimization algorithm, Proceedings 2007 IEEE congress on evolutionary computation, CEC2007, 4297- 4304, 2007. doi: 10.1109/CEC.2007.4425032 https://doi.org/10.1109/CEC.2007.4425032
Rout U.K., Sahu R.K., Panda S. (2013), Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system, Ain Shams Engineering Journal, 4, 409-421, 2013. https://doi.org/10.1016/j.asej.2012.10.010
Sahoo D.K., Sahu R.K., Gorripotu T.S., Panda S. (2016), A novel modified differential evolution algorithm optimized fuzzy proportional integral derivative controller for load frequency control with thyristor controlled series compensator, J. Electr. Syst. Inform. Technol., http://dx.doi.org/10.1016/j.jesit.2016.12.003 https://doi.org/10.1016/j.jesit.2016.12.003
Sahu R.K., Panda S., Rout U.K. (2013), DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity, International Journal of Electric Power & Energy Systems, 49, 19-33, 2013. https://doi.org/10.1016/j.ijepes.2012.12.009
Sahu R.K., Panda S., Padhan S. (2014), Optimal gravitational search algorithm for interconnected power systems, Ain Shams Engineering Journal. 5, 721-733, 2014. https://doi.org/10.1016/j.asej.2014.02.004
Sahu R.K., Panda S., Sekher G.T.C. (2015), A novel hybrid PSO - PS optimized fuzzy PI controller for AGC in multi-area interconnected power system, International Journal of Electric Power & Energy Systems, 64, 880-893, 2015. https://doi.org/10.1016/j.ijepes.2014.08.021
Sahu, R.K., Panda, S.,& Gorripotu, T.S. (2016), Automatic generation control of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization algorithm. Eng. Sci. Technol. Int. J., 19 (1), 113-134, 2016. https://doi.org/10.1016/j.jestch.2015.07.011
Saikia L.C., Nanda J., Mishra S. (2011), Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system. International Journal of Electric Power & Energy Systems, 33, 394-401, 2011. https://doi.org/10.1016/j.ijepes.2010.08.036
Sanchez J., Visioli A., Dormido S. (2011), A two-degree-of-freedom PI controller based on events, Journal of Process Control, 21, 639-651, 2011. https://doi.org/10.1016/j.jprocont.2010.12.001
Saravanan B., Vasudevan E.R., Kothari D.P. (2014), Unit commitment problem solution using invasive weed optimization algorithm, International Journal of Electric Power & Energy Systems, 55, 21-28, 2014. https://doi.org/10.1016/j.ijepes.2013.08.020
Shabani H., Vahidi B., Ebrahimpour M. (2012), A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems, ISA Transactions, 52, 88-95, 2012. https://doi.org/10.1016/j.isatra.2012.09.008
Shayeghi H., Shayanfar H.A., Jalili A. (2009), Load frequency control strategies: A stateof- the art survey for the researcher, International Journal of Energy Conversion and Management, 50, 344-353, 2009. https://doi.org/10.1016/j.enconman.2008.09.014
Wolpert D.H., Macready W.G. (1997), No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1, 67-82, 1997. https://doi.org/10.1109/4235.585893
Xiao H. H. (2014), A novel hybrid optimization algorithm of pattern search and IWO, Applied Mechanics and Materials, 687-691, 1557-1559, 2014. https://doi.org/10.4028/www.scientific.net/AMM.687-691.1557
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.