Gravitation Theory Based Model for Multi-Label Classification
Keywords:
data gravitation theory, interaction, multi-label classificationAbstract
The past decade has witnessed the growing popularity in multi-label classification algorithms in the fields like text categorization, music information retrieval, and the classification of videos and medical proteins. In the meantime, the methods based on the principle of universal gravitation have been extensively used in the classification of machine learning owing to simplicity and high performance. In light of the above, this paper proposes a novel multi-label classification algorithm called the interaction and data gravitation-based model for multi-label classification (ITDGM). The algorithm replaces the interaction between two objects with the attraction between two particles. The author carries out a series of experiments on five multi-label datasets. The experimental results show that the ITDGM performs better than some well-known multi-label classification algorithms. The effect of the proposed model is assessed by the example-based F1-Measure and Label-based micro F1-measure.References
Boser B.E., Guyon I.M., Vapnik V.N. (1992); A training algorithm for optimal margin classifiers, Proce. of the 5th Annual ACM Conf. on Computational Learning Theory, 144- 152, 1992.
Boutell M.R., Luo J., Shen X., Brown C.M. (2004); Learning multi-label scene classification, Pattern Recognition, 37(9), 1757-1771, 2004. https://doi.org/10.1016/j.patcog.2004.03.009
Diplarisa S., Tsoumakas G., Mitkas P., Vlahavas I. (2005); Protein classification with multiple algorithms, Proc. of the 10th Panhellenic Conference on Informatics, 3746, 448-456, 2005.
Freund Y. (1995); Boosting a weak learning algorithm by majority, Information and Computation, 121(2), 256-285, 1995. https://doi.org/10.1006/inco.1995.1136
Fichera A., Fortuna L., Frasca M., Volpe R. (2015); Integration of complex networks for urban energy mapping, International Journal of Heat and Technology, 33(4), 181-184, 2015. https://doi.org/10.18280/ijht.330423
Gomez J., Dasgupta D., Nasraoui O. (2013); A new gravitational clustering algorithm, Proc. of the SIAM Intl. Conf. on Data Mining, 2013.
Ghamrawi N., McCallum A. (2005); Collective multi-label classification, Proc. of the 14th ACM Intl. Conf. Information and Knowledge Management, 195-200, 2005.
Lu H., Rudy S., Liu H. (1996); Effect data mining using neural networks, IEEE Transaction on Knowledge and Data Engineering, 8(6), 957-961, 1996. https://doi.org/10.1109/69.553163
Li J., Fu H. (2009); Data classification based on supporting data gravity. Proc. of the IEEE Intl. Conf. on Intelligent Computing and Intelligent Systems, 1, 22-28, 2009.
Lin T., Wu P., Gao F.G., Yu Y., Wang L.H. (2015); Study on SVM temperature compensation of liquid ammonia volumetric flowmeter based on variable weight PSO, International Journal of Heat and Technology, 33(2), 151-156, 2015. https://doi.org/10.18280/ijht.330224
Pawlak A. (1991); Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht, 1991.
Peng L., Zhang H., Yang B., Chen Y. (2014); A new approach for imbalanced data classification based on data gravitation, Information Sciences, 288(C), 347-373, 2014.
Read J., Pfahringer B., Holmes G., Frank E. (2009); Classifier chains for multi-label classification, Machine Learning and Knowledge Discovery in Databases, 254-269, 2009.
Reyes O., Morell C., Ventura S. (2016); Effective lazy learning algorithm based on a data gravitation model for multi-label learning, Information Sciences, 2016, s340-341, 159-174, 2016.
Spyromitros E., Tsoumakas G., Vlahavas I. (2008); An empirical study of lazy multilabel classification algorithms, Proc. of the 5th Hellenic Conference on Artificial Intelligence, 401- 406, 2008.
Shafigh P., Hadi S.Y., Sohrab E. (2013); Gravitation based classification. Information Sciences, 220(1), 319-330, 2013. https://doi.org/10.1016/j.ins.2012.07.033
Tsoumakas G., Vlahavas I. (2007); Random k-Labelsets: An ensemble method for multilabel classification, Machine learning: ECML 2007, 406-417, 2007.
Wright W. E. (1977); Gravitational clustering, Pattern Recognition, 9(3), 151-166, 1977. https://doi.org/10.1016/0031-3203(77)90013-9
Wang C., Chen Y.Q. (2005); Improving nearest neighbor classification with simulated gravitational collapse, Proc. of the Intl. Conf. on Advances in Natural Computation, 3612, 845- 854, 2005. https://doi.org/10.1007/11539902_104
Wena G., Wei J., Wang J., Zhou T., Chen L. (2013); Cognitive gravitation model for classification on small noisy data, Neurocomputing, 118(11), 245-252, 2013.
Younes Z., Abdallah F., Denceux T. (2008); Multi-label classification algorithm derived from k-nearest neighbor rule with label dependencies, Proc. of the 16th Eropean Signal Processing Conference, 297-308, 2008.
Yang B., Peng L., Chen Y., Liu H., Yuan R. (2006); A DGC-based data classification method used for abnormal network intrusion detection, Proc. of the Intl. Conf. on Neural Information Processing, 4234, 209-216, 2006
Zhang M.L., Zhou Z.H. (2006); Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering, 18(10), 1338-1351, 2006. https://doi.org/10.1109/TKDE.2006.162
Zhang M.L., Zhou Z.H. (2007); ML-KNN: A lazy learning approach to multi-label learning, Pattern Recognition, 40(7), 2038-2048, 2007. https://doi.org/10.1016/j.patcog.2006.12.019
Zhang M.L., Zhou Z.H. (2014); A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837, 2014. https://doi.org/10.1109/TKDE.2013.39
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.