Selective Feature Generation Method for Classification of Low-Dimensional Data
Keywords:
patter classification, feature selection, discriminant analysisAbstract
We propose a method that generates input features to effectively classify low-dimensional data. To do this, we first generate high-order terms for the input features of the original low-dimensional data to form a candidate set of new input features. Then, the discrimination power of the candidate input features is quantitatively evaluated by calculating the ‘discrimination distance’ for each candidate feature. As a result, only candidates with a large amount of discriminative information are selected to create a new input feature vector, and the discriminant features that are to be used as input to the classifier are extracted from the new input feature vectors by using a subspace discriminant analysis. Experiments on low-dimensional data sets in the UCI machine learning repository and several kinds of low-resolution facial image data show that the proposed method improves the classification performance of low-dimensional data by generating features.References
Baker, S.; Sim, T.; Bsat, M. (2003); The CMU pose, illumination, and expression database, IEEE Transaction on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI. 2003.1251154, 25(12), 1615-1618, 2003.
Belhumeur, P. N.; Hespanha, J. P.; Kriegman, D. J. (1997); Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/34.598228, 19(7), 711-720, 1997. https://doi.org/10.1109/34.598228
Blake, C.; Merz, C. J. (1998); UCI Repository of machine learning databases, https://www.nist.gov/, 1998.
Cevikalp, H.; Neamtu, M.; Wilkes, M.; Barkana, A. (2005); Discriminative common vectors for face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2005.9, 27(1), 4-13, 2005. https://doi.org/10.1109/TPAMI.2005.9
Chen, S.; Zhu, Y.; Zhang, D.; Yang, J.-Y. (2005); Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA, Pattern Recognition Letters, DOI: 10.1016/j.patrec.2004.10.009, 26(8), 1157-1167, 2005. https://doi.org/10.1016/j.patrec.2004.10.009
Choi, S.-I. (2015); Feature generation method for low-resolution face recognition, Journal of Korea Multimedia Society, 18(9):1039-1046, 2015. https://doi.org/10.9717/kmms.2015.18.9.1039
Choi, S.-I.; Choi, C.-H.; Jeong, G.-M.; Kwak, N. (2012); Pixel selection based on discriminant features with application to face recognition, Pattern Recognition Letters, DOI: 10.1016/j.patrec.2012.01.005, 33(9), 1083-1092, 2012. https://doi.org/10.1016/j.patrec.2012.01.005
Choi, S.-I.; Oh, J.; Choi, C.-H.; Kim, C. (2012); Input variable selection for feature extraction in classification problems, Signal Processing, ISSN: 01651684, DOI: 10.1016/j.sigpro.2011.08.023, 92(3), 636-648, 2012. https://doi.org/10.1016/j.sigpro.2011.08.023
Cortes, C.; Vapnik, V. (1995); Support-vector networks, Machine Learning, DOI: 10.1023/A:1022627411411, 20(3), 273-297, 1995. https://doi.org/10.1023/A:1022627411411
Cover, T. M. (1965); Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Transactions on Electronic Computers, ISSN: 03677508, DOI: 10.1109/PGEC.1965.264137, (3):326-334, 1965. https://doi.org/10.1109/PGEC.1965.264137
Duda, R. O.; Hart, P. E.; Stork, D. G. (2001); Pattern classification. 2nd, New York, 55, 2001.
Georghiades, A. S.; Belhumeur, P. N.; Kriegman, D. J. (2001); From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/34.927464, 23(6), 643-660, 2001. https://doi.org/10.1109/34.927464
Gonzalez, R.; Woods, R. (2002); Digital image processing, A. Dowrkin, Ed. Upper Saddle River, New Jersey 07458, Prentice Hall, 2002.
Jain, A. K.; Duin, R. P. W.; Mao, J. (2000); Statistical pattern recognition: A review, IEEE Transactions on Pattern Analysis and Machine Intelligence, I, DOI: 10.1109/34.824819, 22(1), 4-37, 2000. https://doi.org/10.1109/34.824819
Keinosuke, F. (1990); Introduction to statistical pattern recognition, Academic Press Inc., 1990.
Keys, R. (1981); Cubic convolution interpolation for digital image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, I, DOI: 10.1109/TASSP.1981.1163711, 29(6), 1153-1160, 1981. https://doi.org/10.1109/TASSP.1981.1163711
Kim, C. (2007); Pattern recognition using composite features, Ph. D. Thesis, Seoul National University, 2007.
Kim, C.; Choi, C.-H. (2007); A discriminant analysis using composite features for classification problems, Pattern Recognition, DOI: 10.1016/j.patcog.2007.02.008, 40(11), 2958-2966, 2007. https://doi.org/10.1016/j.patcog.2007.02.008
Kim, C.; Oh, J. Y.; Choi, C.-H. (2005); Combined subspace method using global and local features for face recognition, Neural Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE International Joint Conference on, DOI: 10.1109/IJCNN.2005.1556212, 4, 2030-2035, 2005. https://doi.org/10.1109/IJCNN.2005.1556212
Kwak, N.; Oh, J. (2009); Feature extraction for one-class classification problems: Enhancements to biased discriminant analysis, Pattern Recognition, I DOI: 10.1016/j.patcog.2008.07.002, 42(1), 17-26, 2009. https://doi.org/10.1016/j.patcog.2008.07.002
Liang, J.; Yang, S.; Winstanley, A. (2008); Invariant optimal feature selection: A distance discriminant and feature ranking based solution, Pattern Recognition, DOI: 10.1016/j.patcog.2007.10.018, 41(5), 1429-1439, 2008. https://doi.org/10.1016/j.patcog.2007.10.018
Lin, F.; Zhou, X.; Zeng, W. (2016); Sparse online learning for collaborative filtering, International Journal of Computers Communications & Control, 11(2), 248-258, 2016. https://doi.org/10.15837/ijccc.2016.2.2144
Marimont, R.; Shapiro, M. (1979); Nearest neighbour searches and the curse of dimensionality, IMA Journal of Applied Mathematics, DOI: 10.1093/imamat/24.1.59, 24(1), 59-70, 1979. https://doi.org/10.1093/imamat/24.1.59
Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.-R. (1999); Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop, 41-48, 1999.
Phillips, P. J.; Wechsler, H.; Huang, J.; Rauss, P. J. (1998); The FERET database and evaluation procedure for face-recognition algorithms, Image and vision computing, 16(5), 295-306, 1998. https://doi.org/10.1016/S0262-8856(97)00070-X
Suto, J.; Oniga, S.; Pop Sitar, P. (2016); Feature analysis to human activity recognition, International Journal of Computers Communications & Control, ISSN: 18419836, 12(1), 116-130, 20106.
Turk, M.; Pentland, A. (1991); Eigenfaces for recognition, Journal of Cognitive Neuroscience, DOI: 10.1162/jocn.1991.3.1.71, 3(1), 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
Viriri, S.; Lagerwall, B. (2016); Increasing face recognition rates using novel classification algorithms, International Journal of Computers Communications & Control, 11(3), 381-393, 2016. https://doi.org/10.15837/ijccc.2016.3.571
Xiong, H.; Swamy, M.; Ahmad, M.O. (2005); Two-dimensional FLD for face recognition, Pattern Recognition, ISSN: 00313203, DOI: 10.1016/j.patcog.2004.12.003, 38(7), 1121-1124, 2005. https://doi.org/10.1016/j.patcog.2004.12.003
Yang, J.; Frangi, A. F.; Yang, J.-y.; Zhang, D.; Jin, Z. (2005); KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2005.33, 27(2), 230-244, 2005. https://doi.org/10.1109/TPAMI.2005.33
Zhou, X. S.; Huang, T. S. (2001); Small sample learning during multimedia retrieval using biasmap, Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, DOI: 10.1109/CVPR.2001.990450, 1, 111-117, 2001. https://doi.org/10.1109/CVPR.2001.990450
Center for Computational Vision and Control, Yale University, The Yale FaceDatabase, http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.