Delay Tolerant Networks over Near Field Communications: The Automatic Multi-packet Communication
Keywords:
mobile communication, radio communication, wireless networks, personal communication networks, cooperative communicationAbstract
The Near Field Communication is designed for sending small data, which size does not exceed the several dozen bytes, for distance not higher than two inches. The NFC can be used in store-carry-forward scenarios which are bases for Disruptive Tolerant Networks. The aim of this paper is proposal how to use NFC in transmission of large data in DTN. We propose an algorithm of fragmenting, sending and receiving data. We described software which was used in our prototype and discussed about implementation. Finally we showed results of tests performed on our model. Obtained results presents well characteristics of our solution.References
Burleigh S., Hooke A., Torgerson L., Fall K., Cerf V., Durst B., Scott K., Weiss H. (2003); Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun. Mag., 128-136, 2003. https://doi.org/10.1109/MCOM.2003.1204759
Curran K., Millar A., Mc Garvey C. (2012); Near field communication, International Journal of Electrical and Computer Engineering, 2(3), 2012.
Domaszewicz J., Koziuk M., Schoeneich R.O. (2008); Context-Addressable Messaging Service with Ontology-Driven Addresses, in Proc. On the Move to Meaningful Internet Systems: OTM 2008, 1471-1481, 2008.
Dziekonski A.M., Schoeneich R.O. (2016); DTN Routing Algorithm for Networks with Nodes Social Behavior, in Proc. International Journal of Computers Communications and Control, 11(4), 457-471, 2016. https://doi.org/10.15837/ijccc.2016.4.1454
Golanski M., Schoeneich R.O., Siwko M. (2010); The algorithm for distribution of large-size data in the Wireless Ad-hoc Sensor Network, in proc. Concepts and Implementation for Innovative Military Communications and Information Technologies, Military University of Technology, 577-584, 2010.
Ha P., Yamamoto H., Yamazaki K. (2013); Using Autonomous Air Vehicle in DTN Sensor Network for Environmental Observation, in Proc. Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual. IEEE, 447-450, 2013.
Fall K. (2003); A delay-tolerant network architecture for chalenged internets, In Proc. of The 2003 conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM '03), 27-34, 2003.
Fan C.-S. (2016); HIGH: A Hexagon-based Intelligent Grouping Approach in Wireless Sensor Networks, Advances in Electrical and Computer Engineering, 16(1), 41-46, 2016. https://doi.org/10.4316/AECE.2016.01006
Fang W., Li S., Liang X., Li Z. (2012); Cluster-based Data Gathering in Long-Strip Wireless Sensor Networks, Advances in Electrical and Computer Engineering, 12(1), 3-8, 2012. https://doi.org/10.4316/aece.2012.01001
Juang P., Oki H., Wang Y., Martonosi M., Peh L.S., Rubenstein D. (2002); Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet, SIGOPS Oper. Syst. Rev., 36(5) (October 2002), 96-107. https://doi.org/10.1145/605397.605408
Kawecki M., Schoeneich R.O. (2016); Mobility-based routing algorithm in delay tolerant networks, in Proc. EURASIP Journal on Wireless Communications and Networking, 81, 1-9, 2016.
Koziuk M., Domaszewicz J., Schoeneich R.O., Jablonowski M., Boetzel P. (2008); Mobile Context-Addressable Messaging with DL-Lite Domain Model, in Proc. Smart Sensing and Context, 5279, 168-181, 2008. doi 10.1007/978-3-540-88793-5_13 https://doi.org/10.1007/978-3-540-88793-5_13
Lindgren A., Doria A., Schelen O. (2003); Probabilistic routing in intermittently connected networks, ACM SIGMOBILE Mobile Computing and Communications Review, 19-20, 2003.
Lu Z., Fan J. (2010); Delay/disruption tolerant network and its application in military communications, Proc. of computer design and applications, 2010. 2010.5541302
Matsuzaki R., Ebara H., Muranaka N. (2015); Rescue Support System with DTN for Earthquake Disasters, IEICE Trans. Commun., 98(9), 1832-1847, 2015,
Ondrus J., Pigneur Y. (2007); An Assessment of NFC for Future Mobile Payment Systems, Proceedings of the International Conference on the Management of Mobile Business (ICMB '07). IEEE Computer Society, 2007,
Quwaider M., Biswas S. (2010); DTN routing in body sensor networks with dynamic postural partitioning, Ad Hoc Networks, 8(8), 824-841, 2010, http://dx.doi.org/10.1016/j.adhoc.2010.03.002 https://doi.org/10.1016/j.adhoc.2010.03.002
Palka P., Schoeneich R.O. (2013); Multi-commodity Trade Application to the Routing Algorithm for the Delay and Disruptive Tolerant Networks, in Proc. New Trends in Databases and Information Systems, 185, 241-250, 2013. https://doi.org/10.1007/978-3-642-32518-2_23
Schoeneich R.O., Domaszewicz J., Koziuk M. (2009); Concept Based Routing in Ad-Hoc Networks, Lecture Notes In Computer Science, 5408, 43-48, 2009. 92295-7_8
Schoeneich R.O., Golanski M. (2007); Mesh Cluster Based Routing Protocol: Enhancing Multi-hop Internet Access using Cluster paradigm, Proc. EUROCON, 2007. The International Conference on Computer as a Tool, 962-965, 2007. https://doi.org/10.1109/EURCON.2007.4400318
Spyropoulos T., Psounis K., Raghavendra C.S. (2005); Spray and wait: an efficient routing scheme for intermittently connected mobile networks, Proc. of The 2005 ACM SIGCOMM workshop on Delay-tolerant networking, 252-259, 2005. https://doi.org/10.1145/1080139.1080143
Vladuta A.-V., Pura M.L., Bica I. (2016); MAC Protocol for Data Gathering in Wireless Sensor Networks with the Aid of Unmanned Aerial Vehicles, Advances in Electrical and Computer Engineering, 16(2), 51-56, 2016. https://doi.org/10.4316/AECE.2016.02007
Want R. (2006); An introduction to RFID technology, IEEE Pervasive Computing 5(1), 25-33, 2006. https://doi.org/10.1109/MPRV.2006.2
Want R. (2011); Near field communication, IEEE Pervasive Computing, 3(10), 4-7, 2011. https://doi.org/10.1109/MPRV.2011.55
Zimmerman T.G. (1996); Personal area networks: near-field intrabody communication, IBM Syst. J., 35(3-4), 609-617, 1996. https://doi.org/10.1147/sj.353.0609
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.