An Uncertainty Measure for Interval-valued Evidences

Authors

  • Wen Jiang School of Electronics and Information, Northwestern Polytechnical University Xi’an, Shaanxi Province, 710072, China http://orcid.org/0000-0001-5429-2748
  • Shiyu Wang School of Electronics and Information, Northwestern Polytechnical University Xi’an, Shaanxi Province, 710072, China

Keywords:

Dempster-Shafer theory, interval-valued belief structure, interval evidence, uncertainty measure, Deng entropy

Abstract

Interval-valued belief structure (IBS), as an extension of single-valued belief structures in Dempster-Shafer evidence theory, is gradually applied in many fields. An IBS assigns belief degrees to interval numbers rather than precise numbers, thereby it can handle more complex uncertain information. However, how to measure the uncertainty of an IBS is still an open issue. In this paper, a new method based on Deng entropy denoted as UIV is proposed to measure the uncertainty of the IBS. Moreover, it is proved that UIV meets some desirable axiomatic requirements. Numerical examples are shown in the paper to demonstrate the efficiency of UIV by comparing the proposed UIV with existing approaches.

 

References

Abellán J., Masegosa A. (2008); Requirements for total uncertainty measures in Dempster- Shafer theory of evidence, International Journal of General Systems 37, 733-747, 2008. https://doi.org/10.1080/03081070802082486

Aminravan F., Sadiq R., Hoorfar M., Rodriguez M. J., Najjaran H. (2015); Multi-level information fusion for spatiotemporal monitoring in water distribution networks, Expert Systems with Applications, 42(7), 3813-3831, 2015. https://doi.org/10.1016/j.eswa.2014.11.014

Bhattacharyya A., Saraswat V. K., Manimaran P., Rao S. B.(2015); Evidence theoretic classification of ballistic missiles, Applied Soft Computing, 37, 479-489, 2015. https://doi.org/10.1016/j.asoc.2015.08.029

Bolar A., Tesfamariam S., Sadiq R. (2013); Condition assessment for bridges: a hierarchical evidential reasoning (HER) framework, Structure & Infrastructure Engineering, 9(7), 1-19, 2013.

Bronevich A., Klir G. J. (2010); Measures of uncertainty for imprecise probabilities: An axiomatic approach, International journal of approximate reasoning, 51(4), 365-390, 2010. https://doi.org/10.1016/j.ijar.2009.11.003

Bronevich A., Lepskiy A.(2015); Imprecision indices: axiomatic, properties and applications, International Journal of General Systems, 44(7-8) (2015) 812-832, 2015.

Chao X., Peng Y., Kou G.(2017); A Similarity Measure-based Optimization Model for Group Decision Making with Multiplicative and Fuzzy Preference Relations, International Journal of Computers Communications & Control, 12(1), 26-40, 2017.

Dempster A. P.(1967); Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38(2), 325-339, 1967. https://doi.org/10.1214/aoms/1177698950

Deng X., Han D., Dezert J., Deng Y., Shyr Y.(2016); Evidence combination from an evolutionary game theory perspective, IEEE Transactions on Cybernetics, 46(9), 2070-2082, 2016. https://doi.org/10.1109/TCYB.2015.2462352

Deng X., Xiao F., Deng Y., Lei L., Quan W.(2017); An improved distance-based total uncertainty measure in belief function theory, Applied Intelligence 46(4), 898-915, 2017. https://doi.org/10.1007/s10489-016-0870-3

Deng X., Jiang W., Zhang J.(2017); Zero-sum matrix game with payoffs of Dempster-Shafer belief structures and its applications on sensors, Sensors, 17(4), 922, doi:10.3390/s17040922, 2017. https://doi.org/10.3390/s17040922

Deng X., Jiang W.(2017); An evidential axiomatic design approach for decision making using the evaluation of belief structure satisfaction to uncertain target values, International Journal of Intelligent Systems, , Article in press, doi:10.1002/int.21929, 2017.

Deng Y. (2016); Deng entropy, Chaos Solitons & Fractals, 91, 549- 553, https://doi.org/10.1016/j.chaos.2016.07.014, 2016. https://doi.org/10.1016/j.chaos.2016.07.014

Denoeux T. (1999); Reasoning with imprecise belief structures, International Journal of Approximate Reasoning, 20(1), 79-111, 1999. https://doi.org/10.1016/S0888-613X(00)88944-6

Denoeux T.(2000); Modeling vague beliefs using fuzzy-valued belief structures, Fuzzy Sets and Systems, 116(2), 167-199, 2000. https://doi.org/10.1016/S0165-0114(98)00405-9

Du W., Cao X., Hu M., Wang W.(2009); Asymmetric cost in snowdrift game on scale-free networks, EPL (Europhysics Letters), 87(6), 60004, 2009. https://doi.org/10.1209/0295-5075/87/60004

Dubois D., Prade H.(1985); A note on measures of specificity for fuzzy sets, International Journal of General System, 10(4), 279-283, 1985. https://doi.org/10.1080/03081078508934893

Dzitac I.(2015); The fuzzification of classical structures: a general view, International Journal of Computers Communications & Control, 10(6), 772-788, 2015. https://doi.org/10.15837/ijccc.2015.6.2069

Frikha A., Moalla H.(2014); Analytic hierarchy process for multi-sensor data fusion based on belief function theory, European Journal of Operational Research, 241(1), 133-147, 2014.

Fu C., Wang Y.(2015); An interval difference based evidential reasoning approach with unknown attribute weights and utilities of assessment grades, Computers & Industrial Engineering, 81, 109-117, 2015. https://doi.org/10.1016/j.cie.2014.12.031

Han D., Dezert J., Duan Z.(2016); Evaluation of probability transformations of belief functions for decision making, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(1), 93-108, 2016. https://doi.org/10.1109/TSMC.2015.2421883

Harmanec D., Klir G. J.(1994); Measuring total uncertainty in dempster-shafer theory: A novel approach, International journal of general system, 22(4), 405-419, 1994. https://doi.org/10.1080/03081079408935225

Hwang C., Yang M.(2015); Belief and plausibility functions on intuitionistic fuzzy sets, International Journal of Intelligent Systems, 31(6), 556-568, 2015. https://doi.org/10.1002/int.21794

Jiang W., Yang Y., Luo Y., Qin X.(2015); Determining basic probability assignment based on the improved similarity measures of generalized fuzzy numbers, International Journal of Computers Communications & Control, 10(3), 333-347, 2015. https://doi.org/10.15837/ijccc.2015.3.1656

Jiang W., Wei B., Zhan J., Xie C., Zhou D.(2016); A visibility graph power averaging aggregation operator: A methodology based on network analysis, Computers & Industrial Engineering, 101, 260-268, 2016. https://doi.org/10.1016/j.cie.2016.09.009

Jiang W., Xie C., Zhuang M., Shou Y., Tang Y.(2016); Sensor data fusion with Z-numbers and its application in fault diagnosis, Sensors, 16(9), Article ID 1509, 2016.

Jiang W., Xie C., Zhuang M., Tang Y.(2017); Failure mode and effects analysis based on a novel fuzzy evidential method, Applied Soft Computing, 57, 672-683, 2017. https://doi.org/10.1016/j.asoc.2017.04.008

Jiang W., Wang S., Liu X., Zheng H., Wei B.(2017); Evidence conflict measure based on OWA operator in open world, PloS one 12(5), b) e0177828, 2017.

Jiang W., Zhan J.(2017); A modified combination rule in generalized evidence theory, Applied Intelligence, 46(3), 630-640, 2017. https://doi.org/10.1007/s10489-016-0851-6

Jiang W., Zhuang M., Xie C., Wu J. (2017); Sensing attribute weights: A novel basic belief assignment method, Sensors, 17(4), 721, doi: 10.3390/s17040721, 2017. https://doi.org/10.3390/s17040721

Jousselme A. L., Liu C., Grenier D., Bosse E.(2006); Measuring ambiguity in the evidence theory, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 36(5), 890-903, 2006. https://doi.org/10.1109/TSMCA.2005.853483

Klir G. J., Wierman M. J.(1999); Uncertainty-based information: elements of generalized information theory, Springer Science & Business Media, 1999.

Klir G. J.(2005); Uncertainty and information: foundations of generalized information theory, John Wiley & Sons, 2005.

Lee E. S., Zhu Q.(1992); An interval Dempster-Shafer approach, Computers & Mathematics with Applications, 24(7), 89-95, 1992. https://doi.org/10.1016/0898-1221(92)90157-D

Lefebvre A., Sannier C., Corpetti T.(2016); Monitoring urban areas with sentinel-2A data: Application to the update of the copernicus high resolution layer imperviousness degree, Remote Sensing, 8(7), doi:10.3390/rs8070606, 2006. https://doi.org/10.3390/rs8070606

Liu W., Liu H., Li L.(2017); A Multiple Attribute Group Decision Making Method Based on 2-D Uncertain Linguistic Weighted Heronian Mean Aggregation Operator, International Journal of Computers Communications & Control, 12(2), 254-264, 2017. https://doi.org/10.15837/ijccc.2017.2.2792

Mo H., Lu X., Deng Y.(2016); A generalized evidence distance, Journal of Systems Engineering and Electronics, 27(2), 470-476, 2016. https://doi.org/10.1109/JSEE.2016.00049

Moosavian A., Khazaee M., Najafi G., Kettner M., Mamat R.(2015); Spark plug fault recognition based on sensor fusion and classifier combination using Dempster-Shafer evidence theory, Applied Acoustics, 93, 120-129, 2015. https://doi.org/10.1016/j.apacoust.2015.01.008

Neshat A., Pradhan B.(2015); Risk assessment of groundwater pollution with a new methodological framework: application of Dempster-Shafer theory and GIS, Natural Hazards, 78(3), 1565-1585, 2015. https://doi.org/10.1007/s11069-015-1788-5

Nguyen K., Denman S., Sridharan S., Fookes C.(2015); Score-level multibiometric fusion based on Dempster-Shafer theory incorporating uncertainty factors, IEEE Transactions on Human-Machine Systems, 45(1), 132-140, 2015. https://doi.org/10.1109/THMS.2014.2361437

Peng M., Chi K. T., Shen M., Xie K.(2013); Fault diagnosis of analog circuits using systematic tests based on data fusion, Circuits, Systems, and Signal Processing, 32(2), 525-539, 2013. https://doi.org/10.1007/s00034-012-9487-x

Perez A., Tabia H., Declercq D., Zanotti A.(2016); Using the conflict in Dempster-Shafer evidence theory as a rejection criterion in classifier output combination for 3d human action recognition, Image & Vision Computing, 55(2), 149-157, 2016.

Ran Y., Li X., Lu L., Li Z.(2012); Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory, International Journal of Geographical Information Science, 26(1), 169-191, 2012. https://doi.org/10.1080/13658816.2011.577745

Roychowdhury S., Koozekanani D. D., Parhi K. K.(2014); DREAM: Diabetic retinopathy analysis using machine learning, IEEE Journal of Biomedical and Health Informatics, 18(5), 1717-1728, 2014. https://doi.org/10.1109/JBHI.2013.2294635

Shafer G.(1976); A Mathematical Theory of Evidence, New Jersey, Princeton University Press, 1976.

Shahpari A., Seyedin S. A.(2015); Using mutual aggregate uncertainty measures in a threat assessment problem constructed by Dempster-Shafer network, IEEE Transactions on Systems Man & Cybernetics Systems, 45(6), 877-886, 2015. https://doi.org/10.1109/TSMC.2014.2378213

Shannon C. E.(1948); A mathematical theory of communication, Bell Labs Technical Journal, 5(3), 3-55, 1948.

Si L., Wang Z., Tan C., Liu X.(2014); A novel approach for coal seam terrain prediction through information fusion of improved D-S evidence theory and neural network, Measurement, 54, 140-151, 2014. https://doi.org/10.1016/j.measurement.2014.04.015

Song Y., Wang X., Lei L., Yue S.(2016); Uncertainty measure for interval-valued belief structures, Measurement, 80, 241-250, 2016. https://doi.org/10.1016/j.measurement.2015.11.032

Song Y., Wang X., Wu W., Lei L., Quan W.(2017); Uncertainty measure for Atanassov's intuitionistic fuzzy sets, Applied Intelligence, 46(4), 757-774, 2017. https://doi.org/10.1007/s10489-016-0863-2

Vasu J. Z., Deb A. K., Mukhopadhyay S.(2015); MVEM-based fault diagnosis of automotive engines using Dempster-Shafer theory and multiple hypotheses testing, IEEE Transactions on Systems Man & Cybernetics Systems, 45(7), 977-989, 2015. https://doi.org/10.1109/TSMC.2014.2384471

Wang J., Hu Y., Xiao F., Deng X., Deng Y.(2016); A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis, Artificial intelligence in medicine, 69, 1-11, 2016. https://doi.org/10.1016/j.artmed.2016.04.004

Wang J., Xiao F., Deng X., Fei L., Deng Y.(2016); Weighted Evidence Combination Based on Distance of Evidence and Entropy Function, International Journal of Distributed Sensor Networks, 12(7), https://doi.org/10.1177/155014773218784, 2016.

Wang Y. M., Yang J. B., Xu D. L., Chin K. S.(2007); On the combination and normalization of interval-valued belief structures, Information Sciences, 177(5), 1230-1247, 2007. https://doi.org/10.1016/j.ins.2006.07.025

Xu S., Jiang W., Deng X., Shou, Y.(2017); A modified Physarum-inspired model for the user equilibrium traffic assignment problem, Applied Mathematical Modelling, , In Press, DOI: 10.1016/j.apm.2017.07.032, 2017. https://doi.org/10.1016/j.apm.2017.07.032

Yager R. R.(2001); Dempster-Shafer belief structures with interval valued focal weights, International Journal of intelligent systems, 16(4), 497-512, 2001. https://doi.org/10.1002/int.1020

Yang J. B., Wang Y. M., Xu D. L., Chin K. S.(2006); The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties, European Journal of Operational Research, 171(1), 309-343, 2006. https://doi.org/10.1016/j.ejor.2004.09.017

Yang J. B., Xu D. L.(2013); Evidential reasoning rule for evidence combination, Artificial Intelligence, 205, 1-29, 2013. https://doi.org/10.1016/j.artint.2013.09.003

Zadeh L. A.(1986); A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination, AI Magazine, 7(2), 85-90, 1986.

Zhang X., Mahadevan S., Deng X.(2017); Reliability analysis with linguistic data: An evidential network approach, Reliability Engineering & System Safety, 162, 111-121, 2017. https://doi.org/10.1016/j.ress.2017.01.009

Published

2017-09-10

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.