Factors Space and its Relationship with Formal Conceptual Analysis: A General View
Keywords:
Factors Space (FS), Formal Concept Analysis (FCA), rough sets, conceptual generation, basic concept semi-lattice, fuzzy logicAbstract
Conceptual generation is a key point and basic problem in artificial intelligence, which has been probed in the Formal Concept Analysis (FCA) established by G. Wille. Factors Space (FS) is also a branch of cognition math initiated by P.Z. Wang at the end of last century, which has been applied in information processing with fuzzy concepts effectively. This paper briefly introduces the historic background of FS and its relationship with FCA. FS can be seen as a good partner of FCA on conceptual description and structure extraction; combining FCA with FS, we can get more clear and simple statements and more fast algorithms on conceptual generation.References
Cheng, Q.F.; Wang, T.T.; Guo, S.C.; Zhang, D.Y.; Jing, K.; Feng, L.; Wang, P.Z. (2017); The Logistic Regression from the Viewpoint of the Factor Space Theory, International Journal of Computers Communications & Control, 12(4), 492-502, 2017. https://doi.org/10.15837/ijccc.2017.4.2918
Cui, T.J.; Wang, P.Z.; Ma, Y.D. (2016); Structured representation methods for 01 space fault tree, J Dalian Jiaotong Univ, 37(1), 82-87, 2016.
Dzitac, I. (2015), The Fuzzification of Classical Structures: A General View, International Journal of Computers Communications & Control, 10(6), 772-788, 2015. https://doi.org/10.15837/ijccc.2015.6.2069
Dzitac, I.;Filip, F.G. ; Manolescu, M.J. (2017); Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017. https://doi.org/10.15837/ijccc.2017.6.3111
Ganter, B.; Wille, R. (1996); Formal concept analysis, Wissenschaftliche Zeitschrift- Technischen Universitat Dresden, 45, 8-13, 1999.
Kandel, A.; Peng, X.T.; Cao, Z.Q.; Wang, P.Z. (1990); Representation of concepts by factor spaces, Cybernetics and Systems: An International Journal, 21(1), 43-57, 1990. https://doi.org/10.1080/01969729008902223
Li, H.X.; Wang P.Z.; Yen, V.C. (1998); Factor spaces theory and its applications to fuzzy information processing.(I). The basics of factor spaces, Fuzzy Sets and Systems, 95(2), 147- 160, 1998. https://doi.org/10.1016/S0165-0114(96)00296-5
Li, H.X.; Yen, V.C.; Lee, E.S. (2000); Factor space theory in fuzzy information processing- Composition of states of factors and multifactorial decision making, Computers & Mathematics with Applications, 39(1), 245-265, 2000.
Li, H.X.; Yen, V.C.; Lee, E.S. (2000); Models of neurons based on factor space, Computers & Mathematics with Applications, 39(12), 91-100, 2000. https://doi.org/10.1016/S0898-1221(00)00132-2
Li, H.X.; Chen, C.P.; Yen, V.C.; Lee, E.S. (2000); Factor spaces theory and its applications to fuzzy information processing: Two kinds of factor space canes, Computers & Mathematics with Applications, 40(6-7), 835-843, 2000. https://doi.org/10.1016/S0898-1221(00)00200-5
Li, H.X.; Chen, C.P.; Lee, E.S. (2000); Factor space theory and fuzzy information processing- Fuzzy decision making based on the concepts of feedback extension, Computers & Mathematics with Applications, 40(6-7), 845-864, 2000. https://doi.org/10.1016/S0898-1221(00)00201-7
Liu, H.T.; Guo, S.C. (2015); Inference model of causality analysis, Journal of Liaoning Technical University(Natural Science), 2015, 34(1), 124-128.
Liu, Z.L. (1990); Factorial Neural Networks, Beijing Normal University Press, 1990.
Pawlak, Z. (1982); Rough sets, International Journal of Parallel Programming, 11(5), 341- 356, 1982. https://doi.org/10.1007/BF01001956
Thurstone L. L. (1931); Multiple factor analysis, Psychological Review, 38(5), 406-427, 1931. https://doi.org/10.1037/h0069792
Vesselenyi, T.; Dzitac, I.; Dzitac, S.; Vaida, V. (2008); Surface roughness image analysis using quasi-fractal characteristics and fuzzy clustering methods, International Journal of Computers Communications & Control, 3(3), 304-316, 2008. https://doi.org/10.15837/ijccc.2008.3.2398
Wang, P.Z. (1981); Randomness, Advance of Statistical Physics, Science and Technology Press, 1981.
Wang, P.Z. (1985); Fuzzy sets and falling shadows of random set, Beijing Normal University Press, 1985.
Wang, P.Z. (1990); A factor spaces approach to knowledge representation, Fuzzy Sets and Systems, 36(1), 113-124, 1990. https://doi.org/10.1016/0165-0114(90)90085-K
Wang, P.Z. (1992); Factor space and concept description, Journal of Software, 1, 30-40, 1992.
Wang, P.Z. (2013); Factor spaces and factor data-bases, Journal of Liaoning Technical University (Natural Science), 32(10), 1-8, 2013.
Wang, P.Z. (2015); Factors space and data science, Journal of Liaoning Technical University (Natural Science), 34(2), 273-280, 2015.
Wang, P.Z.; Guo, S.C.; Bao, Y.K.; Liu, H.T. (2014); Causality analysis in factor spaces, Journal of Liaoning Technical University (Natural Science), 33(7), 1-6, 2015.
Wang, P.Z.; Jiang, A. (2002); Rules detecting and rules-data mutual enhancement based on factors space theory, International Journal of Information Technology & Decision Making, 1(01), 73-90, 2002. https://doi.org/10.1142/S0219622002000087
Wang, P.Z.; Li, H.X. (1995); Fuzzy system theory and fuzzy computer, Publishing Company of Science, 1995.
Wang, P.Z.; Li, H.X. (1994); A mathematical theory on knowledge representation, Tianjin Scientific and Technical Press, 1994.
Wang, P.Z.; Liu, Z.L.; Shi, Y.; Guo, S.C. (2014); Factor space, the theoretical base of data science, Annals of Data Science, 1(2), 233-251, 2014. https://doi.org/10.1007/s40745-014-0017-5
Wang, P.Z.; Ouyang, H.; Zhong, Y.X.; He, H.C. (2016); Cognition math based on factor space, Annals of Data Science, 3(3), 281-303, 2016. https://doi.org/10.1007/s40745-016-0084-x
Wang, P.Z., Sugeno, M. (1982); The factor fields and background structure for fuzzy subsets, Fuzzy Mathematics, 2(2), 45-54, 1982.
Wang, H.D.; Wang, P.Z.; Shi, Y.; Liu, H.T. (2014); Improved factorial analysis algorithm in factor spaces, International Conference on Informatics, 201-204, 2014.
Wang, P.Z.; Zhang, X.H.; Lui, H.C.; Zhang, H.M., Xu, W. (1995); Mathematical theory of truth-valued flow inference, Fuzzy Sets and Systems, 72(2), 221-238, 1995. https://doi.org/10.1016/0165-0114(94)00354-A
Wille, R. (1982); Restructuring lattice theory: an approach based on hierarchies of concepts, Ordered sets, Springer Netherlands, 445-470, 1982.
Yao, Y. (2009); Three-Way Decision: An Interpretation of Rules in Rough Set Theory, RSKT, 9, 642-649, 2009.
Yuan, X.H.; Wang, P.Z.; Lee, E.S. (1992); Factor space and its algebraic representation theory, J Math Anal Appl., 171(1), 256-276, 1992. https://doi.org/10.1016/0022-247X(92)90388-T
Yuan, X.H.; Wang, P.Z.; Lee, E.S. (1994); Factor Rattans, Category FR (Y), and Factor Space, Journal of Mathematical Analysis and Applications, 186(1), 254-264, 1994. https://doi.org/10.1006/jmaa.1994.1297
Zadeh, L.A. (1965); Fuzzy sets, Information and control, 8(3), 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
Zeng, F.H.; Zheng, L. (2017); Sample cultivation in Factorial analysis, Journal of Liaoning Technical University (Natural Science), 36(3), 320-323, 2017.
Zeng, F.H.; Li, Y. (2017); An improved decision tree algorithm based on factor space theory, Journal of Liaoning Technical University (Natural Science), 36(3), 109-112, 2017.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.