Adaptive-Smith Predictor for Controlling an Automotive Electronic Throttle over Network
Keywords:
Adaptive-Smith predictor, electronic throttle control, networked control systems, switching controlAbstract
The paper presents a control strategy for an automotive electronic throttle, a device used to regulate the power produced by spark-ignition engines. Controlling the electronic throttle body is a difficult task because the throttle accounts strong nonlinearities. The difficulty increases when the control works through communication networks subject to random delay. In this paper, we revisit the Smith-predictor control, and show how to adapt it for controlling the electronic throttle body over a delay-driven network. Experiments were carried out in a laboratory, and the corresponding data indicate the benefits of our approach for applications.References
Astrom, K.J.; Hagglund, T. (2004); Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control, 14, 635-650, 2004. https://doi.org/10.1016/j.jprocont.2004.01.002
Balau, A.E.; Caruntu, C.F.; Lazar, C.(2011); Simulation and control of an electro-hydraulic actuated clutch, Mechanical Systems and Signal Processing, 25, 1911-1922, 2011. https://doi.org/10.1016/j.ymssp.2011.01.009
Caruntu, C.F.; Lazar, C. (2014); Network delay predictive compensation based on timedelay modeling as disturbance. International Journal of Control, 87, 2012-2026, 2014.
Caruntu, C.F.; Lazar, M.; Gielen, R.H.; van den Bosch, P.P.J.; Di Cairano, S. (2013); Lyapunov based predictive control of vehicle drivetrains over CAN, Control Engineering Practice, 21, 1884-1898, 2013. https://doi.org/10.1016/j.conengprac.2012.05.012
Chen, C.H.; Lin, C.L.; Hwang, T.S.(2007); Stability of networked control systems with time-varying delays, IEEE Communication Letters, 11, 270-272, 2007. https://doi.org/10.1109/LCOMM.2007.060716
Deur, J.; Pavkovic, D.; Peric, N.; Jansz, M.; Hrovat, D.(2004); An electronic throttle control strategy including compensation of friction and limp-home effects, IEEE Transactions on Industry Applications, 40, 821-834, 2004. https://doi.org/10.1109/TIA.2004.827441
di Bernardo, M.; di Gaeta, A.; Montanaro, U.; Olm, J.M.; Santini, S.(2013); Experimental validation of the discrete-time MCS adaptive strategy, Control Engineering Practice, 21, 847-859, 2013. https://doi.org/10.1016/j.conengprac.2012.12.004
Jiao, X.; Zhang, J.; Shen, T. (2014); An adaptive servo control strategy for automotive electronic throttle and experimental validation, IEEE Transactions on Industrial Electronics, 61, 6275-6284, 2014. https://doi.org/10.1109/TIE.2014.2311398
Kim, D.; Peng, H.; Bai, S.; Maguire, J.M. (2007); Control of integrated powertrain with electronic throttle and automatic transmission, IEEE Transactions on Control Systems Technology, 15, 474-482, 2007. https://doi.org/10.1109/TCST.2007.894641
Lai, C.L.; Hsu, P.L. (2010); Design the remote control system with the time-delay estimator and the adaptive Smith predictor, IEEE Transactions on Industrial Informatics, 6, 73-80, 2010. https://doi.org/10.1109/TII.2009.2037917
Lee, K.C.; Kim, M.H.; Lee, S.; Lee, H.H. (2004); IEEE-1451-Based smart module for invehicle networking systems of intelligent vehicles, IEEE Transactions on Industrial Electronics, 51, 1150-1158, 2004. https://doi.org/10.1109/TIE.2004.837879
Li, Y.; Yang, B.; Zheng, T.; Li, Y.; Cui, M.; Peeta, S. (2015); Extended-state-observer-based double-loop integral sliding-mode control of IEEE Transactions on Intelligent Transportation Systems, 16, 2501-2510, 2015.
Mahmoud, M.S.(2014); Control and Estimation Methods over Communication Networks, Springer International Publishing Switzerland, 2014.
Montanaro, U.; di Gaeta, A.; Giglio, V. (2014); Robust discrete-time MRAC with minimal controller synthesis of an electronic throttle body, IEEE/ASME Transactions on Mechatronics, 19, 524-537, 2014. https://doi.org/10.1109/TMECH.2013.2247614
Natori, K.; Oboe, R.; Ohnishi, K. (2008); Stability analysis and practical design procedure of time delayed control systems with communication disturbance observer, IEEE Transactions on Industrial Informatics, 4, 185-197, 2008. https://doi.org/10.1109/TII.2008.2002705
Natori, K.; Ohnishi, K. (2008); A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account, IEEE Transactions on Industrial Electronics, 55, 2152-2168, 2008. https://doi.org/10.1109/TIE.2008.918635
Navet, N.; Song, Y.; Simonot-Lion, F.; Wilwert, C. (2005); Trends in automotive communication systems, Proceedings of the IEEE, 93, 1204-1223, 2005. https://doi.org/10.1109/JPROC.2005.849725
Normey-Rico, J.E.; Camacho, E.F. (2007); Control of dead-time processes, Advanced Textbooks in Control and Signal Processing, Springer-Verlag London, 2007.
de Oliveira Souza, F.; Mozelli, L.A.; de Oliveira, M.C.; Palhares, R.M. (2016); LMI International Journal of Control, 89(10), 1962-1971, 2016.
Pan, Y.; Ozguner, U.; Dagci, O.H. (2008); Variable-structure control of electronic throttle valve, IEEE Transactions on Industrial Electronics, 55, 3899-3907, 2008. https://doi.org/10.1109/TIE.2008.2005931
Panzani, G.; Corno, M.; Savaresi, S.M. (2013); On adaptive electronic throttle control for sport motorcycles, Control Engineering Practice, 21(1), 42 - 53, 2013. https://doi.org/10.1016/j.conengprac.2012.09.007
Pavkovic, D.; Deur, J.; Janszb, M.; Peric, N. (2006); Adaptive control of Control Engineering Practice, 14(2), 121 - 136, 2006.
Podivilova, E.; Vargas, A.N.; Shiryaev, V.; Acho, L. (2016); Set-valued estimation of switching linear system: an application to an automotive throttle valve, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(4), 755-762, 2016. https://doi.org/10.1002/jnm.2136
Pujol, G.; Vidal, Y.; Acho, L.; Vargas, A.N. (2016); Asymmetric modelling and control of an electronic throttle, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29, 192-204, 2016. https://doi.org/10.1002/jnm.2063
Repele, L.; Muradore, R.; Quaglia, D.; Fiorini, P. (2014); Improving performance of networked control systems by using adaptive buffering, IEEE Transactions on Industrial Electronics, 61, 4847-4856, 2014. https://doi.org/10.1109/TIE.2013.2289862
Rossi, C.; Tilli, A.; Tonielli, A. (2000); Robust control of a throttle body for drive by wire operation of automotive engines, IEEE Trans. Control Syst. Technol., 8(6), 993 -1002, 2000. https://doi.org/10.1109/87.880604
Sarkar, B.; Chakrabarti, A.; Ananthasuresh, G.K. (2017); Synthesis of feedback-based design concepts for sensors, Research in Engineering Design, 131-151, 2017.
Vargas, A.N.; Menegaz, H.M.T.; Ishihara, J.Y.; Acho, L.: (2016); Unscented Kalman filters for estimating the position of an automotive electronic throttle valve, IEEE Transactions on Vehicular Technology, 65(6), 4627-4632, 2016. https://doi.org/10.1109/TVT.2016.2518018
Vasak, M.; Baotic, M.; Petrovic, I.; Peric, N. (2007); Hybrid theory-based time-optimal control of an electronic throttle, IEEE Transactions on Industrial Electronics, 54, 1483- 1494, 2007. https://doi.org/10.1109/TIE.2007.893060
Yuan, X.; Wang, Y. (2009); A novel electronic-throttle-valve controller based on approximate model method, IEEE Trans. Industrial Electronics, 56(3), 883-890, 2009. https://doi.org/10.1109/TIE.2008.2004672
Zhang, S.; Yang, J.J.; Zhu, G.G. (2015); LPV modeling and mixed constrained H2=H1 control of an electronic throttle, IEEE/ASME Transactions on Mechatronics, 20, 2120- 2132, 2015. https://doi.org/10.1109/TMECH.2014.2364538
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.