An Approach for Detecting Fault Lines in a Small Current Grounding System using Fuzzy Reasoning Spiking Neural P Systems
Keywords:
Membrane computing, P system, spiking neural P systems, fault line detection, feature analysis, information gain degree, rough set theoryAbstract
This paper presents a novel approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural P systems. In this approach, six features of current/voltage signals in a small current grounding system are analyzed by considering transient and steady components, respectively; a fault measure is used to quantify the possibility that a line is faulty; information gain degree is discussed to weight the importance of each of the six features; rough set theory is applied to reduce the features; and finally a fuzzy reasoning spiking neural P system is used to construct fault line detection models. Six cases in a small current grounding system prove the effectiveness of the introduced approach.References
Chen, Z.L.; Fan, C.J. (2006); Fault line selection for small current neutral grounding system based on the fifth harmonic current mutation in distribution system, Proc. CSEE, 18(5), 37-40, 2006.
Chen, Z.; Zhang, P.; Wang, X.; Shi, X.; Wu, T.; Zheng, P. (2016); A computational approach for nuclear export signals identification using spiking neural P systems, Neural Comput Appl, 29(3), 695-705, 2016.
Dzitac, I. (2015); Impact of membrane computing and P systems in ISI WoS. Celebrating the 65th birthday of Gheorghe Paun, International Journal of Computers Communications & Control, 10(5): 617-626, 2015. https://doi.org/10.15837/ijccc.2015.5.2024
Dong, X.; Shi, S. (2008); Identifying single-phase-to-ground fault feeder in neutral non effectively grounded distribution system using wavelet transform, IEEE Trans on Power Deliver, 23(4), 1829-1837, 2008. https://doi.org/10.1109/TPWRD.2008.917924
Fan, L. P.; Yuan, Z.Q.; Zhang, K. (2009); System with insulated neutral point earthing of fault line detection fusion technology study based on fuzzy and rough set theory, Central China Electric Power, 1, 7-11, 2009.
Frisco, P.; Gheorghe, M.; Pérez-Jiménez, M.J. (Eds.) (2014); Applications of membrane computing in systems and synthetic biology, Springer, Heidelberg, 2014.
He, J., Xiao, J., Liu, X., Wu, T., Song, T. (2015); A novel membrane-inspired algorithm for optimizing solid waste transportation, Optik, 126(23), 3883-3888, 2015. https://doi.org/10.1016/j.ijleo.2015.07.152
Huang, K.; Wang, T.; He, Y.; Zhang, G.; Pérez-Jiménez, M. J. (2016); Temporal fuzzy reasoning spiking neural P systems with real numbers for power system fault diagnosis, J Comput Theor Nanosci, 13(6), 3804-3814, 2016. https://doi.org/10.1166/jctn.2016.5214
Huang, T.; Voronca, S. L.; Purcarea, A.; Estebsari, A.; Bompard, E. (2014); Analysis of chain of events in major historic power outages, Adv Electr Comput Eng, 14(3), 63-70, 2014. https://doi.org/10.4316/AECE.2014.03008
He, Y.; Wang, T.; Huang, K.; Zhang, G.; Pérez-Jiménez, M.J. (2015); Fault diagnosis of metro traction power systems using a modified fuzzy reasoning spiking neural P system, Rom J Inf Sci Technol, 18(3), 256-272, 2015.
Ionescu, M.; Paun, Gh.; Yokomori, T. (2006); Spiking neural P systems, Fund Inform, 71(2-3), 279-308, 2006.
Jiang, K.; Chen, W.; Zhang, Y.; Pan, L. (2016); On string languages generated by sequential spiking neural P systems based on the number of spikes, Nat Comput, 15(1), 87-96, 2016. https://doi.org/10.1007/s11047-015-9514-5
Jiang, K.; Pan, L. (2016); Spiking neural P systems with anti-spikes working in sequential mode induced by maximum spike number, Neurocomputing, 171, 1674-1683, 2016. https://doi.org/10.1016/j.neucom.2015.07.100
Jia, Q.; Shi, L.; Wang, N.; Dong, H. (2012); A fusion method for ground fault line detection in compensated power networks based on evidence theory and information entropy, Trans China Electrotech Soc, 27(6): 191-197, 2012.
Liang, R.; Xin, J.; Wang, C.L.; Li, G.X.; Tang, J.J. (2010); Fault line selection in small current grounding system by improved active component method, High Voltage Eng, 36(2), 375-379, 2010.
Liu, X.; Li, Z.; Suo, J.; Liu, J.; Min, X. (2015); A uniform solution to integer factorization using time-free spiking neural P system, Neural Comput Appl, 26(5): 1241-1247, 2015. https://doi.org/10.1007/s00521-014-1799-2
Liu, X.; Li, Z.; Liu, J.; Liu, L.; Zeng, X. (2015); Implementation of arithmetic operations with time-free spiking neural P systems, IEEE Trans on Nanobiosci, 14(6), 617-624, 2015. https://doi.org/10.1109/TNB.2015.2438257
Paun, Gh. (2000); Computing with membranes, J Comput System Sci, 61(1), 108-143, 2000. https://doi.org/10.1006/jcss.1999.1693
Paun, Gh. (2016); Membrane computing and economics: A general view, International Journal of Computers Communications & Control, 11(1), 105-112, 2016. https://doi.org/10.15837/ijccc.2016.1.2160
Paun, Gh.; Rozenberg, G.; Salomaa, A. (Eds.) (2010); The Oxford handbook of membrane computing, Oxford University Press, New York, 2010.
Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. (2013); Fuzzy reasoning spiking neural P system for fault diagnosis, Inform Sciences, 235(20), 106-116, 2013.
Pan, L.; Paun, Gh. (2009); Spiking neural P systems with anti-spikes, International Journal of Computers Communications & Control, 4(3), 273-282, 2009. https://doi.org/10.15837/ijccc.2009.3.2435
Pan, L.; Paun, Gh.; Zhang, G.; Neri, F. (2017); Spiking neural P systems with communication on request, Int J Neural Syst, 27(8), 1750042, 2017. https://doi.org/10.1142/S0129065717500423
Pawlak, Z. (1998); Rough set theory and its applications to data analysis, Cybernet Syst, 29(7), 661-688, 1998. https://doi.org/10.1080/019697298125470
Rong, H.; Zhu, M.; Feng, Z.; Zhang, G.; Huang, K. (2017); A novel spproach to fault classification of power transmission lines using singular value decomposition and fuzzy reasoning spiking neural P systems, Rom J Inf Sci Technol, 20(1), 18-31, 2017.
Song, B.; Pérez-Jiménez, M.J.; Pan, L. (2015); Computational efficiency and universality of timed P systems with membrane creation, Soft Comput, 19(11), 3043-3053, 2015. https://doi.org/10.1007/s00500-015-1732-3
Shu, H.; Qiu, G.; Li, C.; Peng, S. (2010); A fault line selection algorithm using neural network based on S-transform energy, Proc. 6th Internat Conf Nat Comput, 3, 1478-1482, 2010.
Song, T.; Zheng, H.; Juanjuan (2014); Solving vertex cover problem by tissue P systems with cell division, Appl Math Inf Sci, ISSN 2325-0399, 8(8), 333-337, 2014.
Song, T.; Zheng, P.; Wong, M. L. D.; Wang, X. (2016); Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control, Inform Sciences, 372, 380-391, 2016. https://doi.org/10.1016/j.ins.2016.08.055
Sang, Z.; Pan, Z.; Li, L.; Zhang, H. (1997); A new approach of fault line identification, fault distance measurement and fault location for single phase-to-ground fault in small current neutral grounding system, Power Syst Technol, 21(10), 50-52, 1997.
Tang, Y.; Chen, K.; Chen, Q.; Dong, H.B. (2005); Study on earthed fault location method in indirectly grounding power system using maximum value of absolute value summation of measurement admittance mutual difference, Proc. CSEE , 25(6), 49-54, 2005.
Voronca, S. L.; Voronca, M. M.; Huang, T.; Purcarea, A. A. (2015); Applying the analytic hierarchy process to rank natural threats to power system security, U P B Sci Bull Ser C, 77(3), 269-280, 2015.
Wang, B.; Yu, C.K.; Ye, J.; Bai, Y. (2011); Fault line selection method for single phaseto- ground faults of multi-criteria information integrated with lower current grounding power system based on fuzzy theory, Guangdong Electric Power, 9, 24-28, 2011.
Wang, J.; Shi, P.; Peng, H.; Pérez-Jiménez, M.J.; Wang, T. (2013); Weighted fuzzy spiking neural P systems, IEEE Trans on Fuzzy Syst, 21(2), 209-220, 2013. https://doi.org/10.1109/TFUZZ.2012.2208974
Welfonder, T.; Leitloff, V.; Fenillet, R.; Vitet, S. (2000); Location strategies and evaluation of detection algorithms for earth faults in compensated MV distribution systems, IEEE Trans on Power Deliver, 15(4), 1121-1128, 2000. https://doi.org/10.1109/61.891492
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.