A Spectral Clustering Algorithm Improved by P Systems
Keywords:
machine learning, spectral clustering, membrane computing, tissue-like P systemsAbstract
Using spectral clustering algorithm is diffcult to find the clusters in the cases that dataset has a large difference in density and its clustering effect depends on the selection of initial centers. To overcome the shortcomings, we propose a novel spectral clustering algorithm based on membrane computing framework, called MSC algorithm, whose idea is to use membrane clustering algorithm to realize the clustering component in spectral clustering. A tissue-like P system is used as its computing framework, where each object in cells denotes a set of cluster centers and velocity-location model is used as the evolution rules. Under the control of evolutioncommunication mechanism, the tissue-like P system can obtain a good clustering partition for each dataset. The proposed spectral clustering algorithm is evaluated on three artiffcial datasets and ten UCI datasets, and it is further compared with classical spectral clustering algorithms. The comparison results demonstrate the advantage of the proposed spectral clustering algorithm.References
Buiu, C.; Vasile, C.; Arsene, O. (2012); Development of membrane controllers for mobile robots, Information Sciences, 187, 33-51, 2012. https://doi.org/10.1016/j.ins.2011.10.007
Chan, P.K.; Schlag, M.D.F.; Zien, J.Y. (1993); Spectral k-way ratio-cut partitioning and clustering, DAC, 749-754, 1993.
Colomer, A.M.; Margalida, A.; Pérez-Jiménez, M.J. (2013); Population dynamics P system (PDP) models: a standarized protocol for describing and applying novel bio-inspired computing tools, Plos One, 4, 1-13, 2013.
DÃaz-Pernil, D.; Berciano, A.; Pe-a-Cantillana, F.; Gutiérrez-Naranjo, M.A. (2013); Segmenting images with gradient-based edge detection using membrane computing, Pattern Recognition Letters, 34(8), 846-855, 2013. https://doi.org/10.1016/j.patrec.2012.10.014
DÃaz-Pernil, D.; Pe-a-Cantillana, F.; Gutiérrez-Naranjo, M.A. (2013); A parallel algorithm for skeletonizing images by using spiking neural P systems, Neurocomputing, 115, 81-91, 2013. https://doi.org/10.1016/j.neucom.2012.12.032
Ding, C.; He, X.; Zha, H.; Gu, M.; Simon, H. (2001); Spectral min-max cut for graph partitioning and data clustering, Technical Report TR-2001-XX, Lawrence Berkeley National La1boratory, University of California, Berkeley, CA, 2001.
Dzitac, I. (2015); Impact of membrane computing and P systems in ISI WoS. celebrating the 65th birthday of Gheorghe P un, International Journal of Computers Communications & Control, 10(5), 617-626, 2015. https://doi.org/10.15837/ijccc.2015.5.2024
Freund, R.; Paun, G.; Pérez-Jiménez, M.J. (2005); Tissue-like P systems with channel-states, Theoretical Computer Science, 330, 101-116, 2005. https://doi.org/10.1016/j.tcs.2004.09.013
Garcia-Quismondo, M.; Levin, M.; Lobo-Fernández, D. (2017); Modeling regenerative processes with Membrane Computing, Information Sciences, 381, 229-249, 2017. https://doi.org/10.1016/j.ins.2016.11.017
Gheorghe, M.; Manca, V.; Romero-Campero, F.J. (2010); Deterministic and stochastic P systems for modelling cellular processes, Natural Computing, 9(2), 457-473, 2010. https://doi.org/10.1007/s11047-009-9158-4
Ionescu, M.; P un G.; Yokomori, T. (2006); Spiking neural P systems, Fundamenta Informaticae, 71, 279-308, 2006.
Liu, X.; Zhao, Y.; Sun, W. (2016); K-medoids-based consensus clustering based on cell-like P systems with promoters and inhibitors, Bio-inspired Computing - Theories and Applications, 95-108, 2016.
Luxburg, U.V. (2007); A tutorial on spectral clustering, Statistics and Computing, 17(4), 395-416, 2007. https://doi.org/10.1007/s11222-007-9033-z
Ng, A.Y., Jordan, M., Weiss, Y. (2001); On spectral clustering: analysis and an algorithm, Proc Nips, 849-856, 2001.
Pan, L.; Wang, J.; Hoogeboom, H.J. (2012); Spiking neural P systems with astrocytes, Neural Computation, 24(3), 805-825, 2012. https://doi.org/10.1162/NECO_a_00238
Pan, L.; P un, G. (2009); Spiking neural p systems with anti-spikes, International Journal of Computers Communications & Control, 4(3), 273-282, 2009. https://doi.org/10.15837/ijccc.2009.3.2435
Paun, G. (2000); Computing with membranes, Journal of Computer System Sciences, 61(1), 108-143, 2000. https://doi.org/10.1006/jcss.1999.1693
Paun, G.; Rozenberg, G.; Salomaa, A. (2010); The Oxford Handbook of Membrance Computing, Oxford Unversity Press, New York, 2010.
Paun, G. (2016); Membrane computing and economics: a general view, International Journal of Computers Communications & Control, 11(1), 105-112, 2016.
Peng, H.; Shi, P.; Wang, J.; Riscos-Nú-ez, A.; Pérez-Jiménez, M.J. (2017); Multiobjective fuzzy clustering approach based on tissue-like membrane systems, Knowledge-Based Systems, 125, 74-82, 2017. https://doi.org/10.1016/j.knosys.2017.03.024
Peng, H.; Wang, J.; Ming, J.; Shi, P.; Pérez-Jiménez, M.J.; Yu, W.; Tao, C. (2018); Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems, IEEE Transaction on Smart Grid, 2018.
Peng, H.; Wang, J.; Pérez-Jiménez, M.J. (2015); Optimal multi-level thresholding with membrane computing, Digital Signal Processing, 37, 53-64, 2015. https://doi.org/10.1016/j.dsp.2014.10.006
Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2014); The framework of P systems applied to solve optimal watermarking problem, Signal Processing, 101, 256-265, 2014. https://doi.org/10.1016/j.sigpro.2014.02.020
Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2015); An unsupervised learning algorithm for membrane computing, Information Sciences, 304(20), 80-91, 2015.
Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Shi, P. (2013); A novel image thresholding method based on membrane computing and fuzzy entropy, Journal of Intelligent and Fuzzy Systems, 24(2), 229-237, 2013.
Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. (2013); Fuzzy reasoning spiking neural P system for fault diagnosis, Information Sciences, 235(20), 106-116, 2013.
Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2016); An extended membrane system with active membrane to solve automatic fuzzy clustering problems, International Journal of Neural Systems, 26, 1-17, 2016.
Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2017); Fault diagnosis of power systems using fuzzy tissue-like P systems, Integrated Computer-Aided Engineering, 24, 401-411, 2017. https://doi.org/10.3233/ICA-170552
Peng, H.; Wang, J.; Shi, P.; Riscos-Nú-ez, A.; Pérez-Jiménez, M.J. (2015); An automatic clustering algorithm inspired by membrane computing, Pattern Recognition Letters, 68(15), 34-40, 2015.
Perona, P.; Freeman, W. (1998); A factorization approach to grouping, Computer Vision ECCV'98, Springer, 655-670, 1998.
Shi, J.; Malik, J. (2000); Normalized cuts and image segmentation, IEEE Transactions on pattern analysis and machine intelligence, 22(8), 888-905, 2000. https://doi.org/10.1109/34.868688
Song, T.; Pan, L., P un, G. (2014), Spiking neural P systems with rules on synapses, Theoretical Computer Science, 529, 82-95, 2014. https://doi.org/10.1016/j.tcs.2014.01.001
Tu, M.; Wang, J.; Peng, H.; Shi, P. (2014); Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems, Chin. Jour. Elect., 23(1), 87-92, 2014.
Wang, J.; Peng, H. (2013); Adaptive fuzzy spiking neural P systems for fuzzy inference and learning, International Journal of Computer Mathematics, 90(4), 857-868, 2013. https://doi.org/10.1080/00207160.2012.743653
Wang, J.; Peng, H.; Tu, M.; Pérez-Jiménez, M.J. (2016); A fault diagnosis method of power systems based on an improved adaptive fuzzy spiking neural P systems and PSO algorithms, Chin. Jour. Elect., 25(2), 320-327, 2016. https://doi.org/10.1049/cje.2016.03.019
Wang, J.; Shi, P.; Peng, H. (2016); Membrane computing model for IIR filter design, Information Sciences, 329, 164-176, 2016. https://doi.org/10.1016/j.ins.2015.09.011
Wang, J.; Shi, P.; Peng, H.; Pérez-Jiménez, M.J.; Wang, T. (2013); Weighted fuzzy spiking neural P system, IEEE Trans. Fuzzy Syst., 21(2), 209-220, 2013. https://doi.org/10.1109/TFUZZ.2012.2208974
Wang, T.; Zhang, G.X.; Zhao, J.B.; He, Z.Y.; Wang, J., Pérez-Jiménez, M.J. (2015); Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems, IEEE Trans. Power Syst., 30(3), 1182-1194, 2015. https://doi.org/10.1109/TPWRS.2014.2347699
Xiong, G.; Shi, D.; Zhu, L.; Duan, X. (2013); A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems, Mathematical Problems in Engineering, 2013(1), 211-244, 2013.
Yahya, R.I.; Hasan, S.; George, L.E.; Alsalibi, B. (2015); Membrane computing for 2D image segmentation, International Journal of Advances in Soft Computing and its Application, 7(1), 35-50, 2015.
Zeng, X.; Zhang, X.; Song, T.; Pan, L. (2014); Spiking neural P systems with thresholds, Neural Computation, 26(7), 1340-1361, 2014. https://doi.org/10.1162/NECO_a_00605
Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q. (2013); A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems, Applied Soft Computing, 13(3), 1528-1542, 2013. https://doi.org/10.1016/j.asoc.2012.05.032
Zhang, G.; Gheorghe, M.; Li, Y. (2012); A membrane algorithm with quantum-inspired subalgorithms and its application to image processing, Natural Computing, 11(4), 701-717, 2012. https://doi.org/10.1007/s11047-012-9320-2
Zhang, G.; Gheorghe, M.; Pan, L.; Pérez-Jiménez, M.J. (2014); Evolutionary membrane computing: a comprehensive survey and new results, Information Sciences, 279, 528-551, 2014. https://doi.org/10.1016/j.ins.2014.04.007
Zhang G.; Liu, C.; Rong, H. (2010); Analyzing radar emitter signals with membrane algorithms, Mathematical and Computer Modelling, 52, 1997-2010, 2010. https://doi.org/10.1016/j.mcm.2010.06.002
Zhang, X.; Pan, L.; P un, A. (2015); On the universality of axon P systems, IEEE Transactions on Neural Networks and Learning Systems, 26(11), 2816-2829, 2015. https://doi.org/10.1109/TNNLS.2015.2396940
Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. (2017); Real-life Applications With Membrane Computing, Springer, 2017.
Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. (2014); An optimization spiking neural P system for approximately solving combinatorial optimization problems, International Journal of Neural Systems, 24, 1-16, 2014.
Zhao, Y.; Liu, X.; Qu, J. (2012); The k-medoids clustering algorithm by a class of P system, Journal of Information & Computational Science, 9(18), 5777-5790, 2012.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.