A Spectral Clustering Algorithm Improved by P Systems

Authors

  • Guangchun Chen School of Computer and Software Engineering Xihua University, Chengdu, 610039, Sichuan, China
  • Juan Hu Xiangnian Huang School of Computer and Software Engineering Xihua University, Chengdu, 610039, Sichuan, China
  • Hong Peng Xihua University
  • Jun Wang School of Electrical and Information Engineering Xihua University, Chengdu, 610039, Sichuan, China
  • Xiangnian Huang School of Computer and Software Engineering Xihua University, Chengdu, 610039, Sichuan, China

Keywords:

machine learning, spectral clustering, membrane computing, tissue-like P systems

Abstract

Using spectral clustering algorithm is diffcult to find the clusters in the cases that dataset has a large difference in density and its clustering effect depends on the selection of initial centers. To overcome the shortcomings, we propose a novel spectral clustering algorithm based on membrane computing framework, called MSC algorithm, whose idea is to use membrane clustering algorithm to realize the clustering component in spectral clustering. A tissue-like P system is used as its computing framework, where each object in cells denotes a set of cluster centers and velocity-location model is used as the evolution rules. Under the control of evolutioncommunication mechanism, the tissue-like P system can obtain a good clustering partition for each dataset. The proposed spectral clustering algorithm is evaluated on three artiffcial datasets and ten UCI datasets, and it is further compared with classical spectral clustering algorithms. The comparison results demonstrate the advantage of the proposed spectral clustering algorithm.

References

Buiu, C.; Vasile, C.; Arsene, O. (2012); Development of membrane controllers for mobile robots, Information Sciences, 187, 33-51, 2012. https://doi.org/10.1016/j.ins.2011.10.007

Chan, P.K.; Schlag, M.D.F.; Zien, J.Y. (1993); Spectral k-way ratio-cut partitioning and clustering, DAC, 749-754, 1993.

Colomer, A.M.; Margalida, A.; Pérez-Jiménez, M.J. (2013); Population dynamics P system (PDP) models: a standarized protocol for describing and applying novel bio-inspired computing tools, Plos One, 4, 1-13, 2013.

Díaz-Pernil, D.; Berciano, A.; Pe-a-Cantillana, F.; Gutiérrez-Naranjo, M.A. (2013); Segmenting images with gradient-based edge detection using membrane computing, Pattern Recognition Letters, 34(8), 846-855, 2013. https://doi.org/10.1016/j.patrec.2012.10.014

Díaz-Pernil, D.; Pe-a-Cantillana, F.; Gutiérrez-Naranjo, M.A. (2013); A parallel algorithm for skeletonizing images by using spiking neural P systems, Neurocomputing, 115, 81-91, 2013. https://doi.org/10.1016/j.neucom.2012.12.032

Ding, C.; He, X.; Zha, H.; Gu, M.; Simon, H. (2001); Spectral min-max cut for graph partitioning and data clustering, Technical Report TR-2001-XX, Lawrence Berkeley National La1boratory, University of California, Berkeley, CA, 2001.

Dzitac, I. (2015); Impact of membrane computing and P systems in ISI WoS. celebrating the 65th birthday of Gheorghe P un, International Journal of Computers Communications & Control, 10(5), 617-626, 2015. https://doi.org/10.15837/ijccc.2015.5.2024

Freund, R.; Paun, G.; Pérez-Jiménez, M.J. (2005); Tissue-like P systems with channel-states, Theoretical Computer Science, 330, 101-116, 2005. https://doi.org/10.1016/j.tcs.2004.09.013

Garcia-Quismondo, M.; Levin, M.; Lobo-Fernández, D. (2017); Modeling regenerative processes with Membrane Computing, Information Sciences, 381, 229-249, 2017. https://doi.org/10.1016/j.ins.2016.11.017

Gheorghe, M.; Manca, V.; Romero-Campero, F.J. (2010); Deterministic and stochastic P systems for modelling cellular processes, Natural Computing, 9(2), 457-473, 2010. https://doi.org/10.1007/s11047-009-9158-4

Ionescu, M.; P un G.; Yokomori, T. (2006); Spiking neural P systems, Fundamenta Informaticae, 71, 279-308, 2006.

Liu, X.; Zhao, Y.; Sun, W. (2016); K-medoids-based consensus clustering based on cell-like P systems with promoters and inhibitors, Bio-inspired Computing - Theories and Applications, 95-108, 2016.

Luxburg, U.V. (2007); A tutorial on spectral clustering, Statistics and Computing, 17(4), 395-416, 2007. https://doi.org/10.1007/s11222-007-9033-z

Ng, A.Y., Jordan, M., Weiss, Y. (2001); On spectral clustering: analysis and an algorithm, Proc Nips, 849-856, 2001.

Pan, L.; Wang, J.; Hoogeboom, H.J. (2012); Spiking neural P systems with astrocytes, Neural Computation, 24(3), 805-825, 2012. https://doi.org/10.1162/NECO_a_00238

Pan, L.; P un, G. (2009); Spiking neural p systems with anti-spikes, International Journal of Computers Communications & Control, 4(3), 273-282, 2009. https://doi.org/10.15837/ijccc.2009.3.2435

Paun, G. (2000); Computing with membranes, Journal of Computer System Sciences, 61(1), 108-143, 2000. https://doi.org/10.1006/jcss.1999.1693

Paun, G.; Rozenberg, G.; Salomaa, A. (2010); The Oxford Handbook of Membrance Computing, Oxford Unversity Press, New York, 2010.

Paun, G. (2016); Membrane computing and economics: a general view, International Journal of Computers Communications & Control, 11(1), 105-112, 2016.

Peng, H.; Shi, P.; Wang, J.; Riscos-Nú-ez, A.; Pérez-Jiménez, M.J. (2017); Multiobjective fuzzy clustering approach based on tissue-like membrane systems, Knowledge-Based Systems, 125, 74-82, 2017. https://doi.org/10.1016/j.knosys.2017.03.024

Peng, H.; Wang, J.; Ming, J.; Shi, P.; Pérez-Jiménez, M.J.; Yu, W.; Tao, C. (2018); Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems, IEEE Transaction on Smart Grid, 2018.

Peng, H.; Wang, J.; Pérez-Jiménez, M.J. (2015); Optimal multi-level thresholding with membrane computing, Digital Signal Processing, 37, 53-64, 2015. https://doi.org/10.1016/j.dsp.2014.10.006

Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2014); The framework of P systems applied to solve optimal watermarking problem, Signal Processing, 101, 256-265, 2014. https://doi.org/10.1016/j.sigpro.2014.02.020

Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2015); An unsupervised learning algorithm for membrane computing, Information Sciences, 304(20), 80-91, 2015.

Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Shi, P. (2013); A novel image thresholding method based on membrane computing and fuzzy entropy, Journal of Intelligent and Fuzzy Systems, 24(2), 229-237, 2013.

Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. (2013); Fuzzy reasoning spiking neural P system for fault diagnosis, Information Sciences, 235(20), 106-116, 2013.

Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2016); An extended membrane system with active membrane to solve automatic fuzzy clustering problems, International Journal of Neural Systems, 26, 1-17, 2016.

Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Nú-ez, A. (2017); Fault diagnosis of power systems using fuzzy tissue-like P systems, Integrated Computer-Aided Engineering, 24, 401-411, 2017. https://doi.org/10.3233/ICA-170552

Peng, H.; Wang, J.; Shi, P.; Riscos-Nú-ez, A.; Pérez-Jiménez, M.J. (2015); An automatic clustering algorithm inspired by membrane computing, Pattern Recognition Letters, 68(15), 34-40, 2015.

Perona, P.; Freeman, W. (1998); A factorization approach to grouping, Computer Vision ECCV'98, Springer, 655-670, 1998.

Shi, J.; Malik, J. (2000); Normalized cuts and image segmentation, IEEE Transactions on pattern analysis and machine intelligence, 22(8), 888-905, 2000. https://doi.org/10.1109/34.868688

Song, T.; Pan, L., P un, G. (2014), Spiking neural P systems with rules on synapses, Theoretical Computer Science, 529, 82-95, 2014. https://doi.org/10.1016/j.tcs.2014.01.001

Tu, M.; Wang, J.; Peng, H.; Shi, P. (2014); Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems, Chin. Jour. Elect., 23(1), 87-92, 2014.

Wang, J.; Peng, H. (2013); Adaptive fuzzy spiking neural P systems for fuzzy inference and learning, International Journal of Computer Mathematics, 90(4), 857-868, 2013. https://doi.org/10.1080/00207160.2012.743653

Wang, J.; Peng, H.; Tu, M.; Pérez-Jiménez, M.J. (2016); A fault diagnosis method of power systems based on an improved adaptive fuzzy spiking neural P systems and PSO algorithms, Chin. Jour. Elect., 25(2), 320-327, 2016. https://doi.org/10.1049/cje.2016.03.019

Wang, J.; Shi, P.; Peng, H. (2016); Membrane computing model for IIR filter design, Information Sciences, 329, 164-176, 2016. https://doi.org/10.1016/j.ins.2015.09.011

Wang, J.; Shi, P.; Peng, H.; Pérez-Jiménez, M.J.; Wang, T. (2013); Weighted fuzzy spiking neural P system, IEEE Trans. Fuzzy Syst., 21(2), 209-220, 2013. https://doi.org/10.1109/TFUZZ.2012.2208974

Wang, T.; Zhang, G.X.; Zhao, J.B.; He, Z.Y.; Wang, J., Pérez-Jiménez, M.J. (2015); Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems, IEEE Trans. Power Syst., 30(3), 1182-1194, 2015. https://doi.org/10.1109/TPWRS.2014.2347699

Xiong, G.; Shi, D.; Zhu, L.; Duan, X. (2013); A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems, Mathematical Problems in Engineering, 2013(1), 211-244, 2013.

Yahya, R.I.; Hasan, S.; George, L.E.; Alsalibi, B. (2015); Membrane computing for 2D image segmentation, International Journal of Advances in Soft Computing and its Application, 7(1), 35-50, 2015.

Zeng, X.; Zhang, X.; Song, T.; Pan, L. (2014); Spiking neural P systems with thresholds, Neural Computation, 26(7), 1340-1361, 2014. https://doi.org/10.1162/NECO_a_00605

Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q. (2013); A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems, Applied Soft Computing, 13(3), 1528-1542, 2013. https://doi.org/10.1016/j.asoc.2012.05.032

Zhang, G.; Gheorghe, M.; Li, Y. (2012); A membrane algorithm with quantum-inspired subalgorithms and its application to image processing, Natural Computing, 11(4), 701-717, 2012. https://doi.org/10.1007/s11047-012-9320-2

Zhang, G.; Gheorghe, M.; Pan, L.; Pérez-Jiménez, M.J. (2014); Evolutionary membrane computing: a comprehensive survey and new results, Information Sciences, 279, 528-551, 2014. https://doi.org/10.1016/j.ins.2014.04.007

Zhang G.; Liu, C.; Rong, H. (2010); Analyzing radar emitter signals with membrane algorithms, Mathematical and Computer Modelling, 52, 1997-2010, 2010. https://doi.org/10.1016/j.mcm.2010.06.002

Zhang, X.; Pan, L.; P un, A. (2015); On the universality of axon P systems, IEEE Transactions on Neural Networks and Learning Systems, 26(11), 2816-2829, 2015. https://doi.org/10.1109/TNNLS.2015.2396940

Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. (2017); Real-life Applications With Membrane Computing, Springer, 2017.

Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. (2014); An optimization spiking neural P system for approximately solving combinatorial optimization problems, International Journal of Neural Systems, 24, 1-16, 2014.

Zhao, Y.; Liu, X.; Qu, J. (2012); The k-medoids clustering algorithm by a class of P system, Journal of Information & Computational Science, 9(18), 5777-5790, 2012.

Published

2018-09-29

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.