An ABC Algorithm with Recombination
Keywords:
Artificial bee colony (ABC), recombination, hybrid search model, global optimizationAbstract
Artificial bee colony (ABC) is an efficient swarm intelligence algorithm, which has shown good exploration ability. However, its exploitation capacity needs to be improved. In this paper, a novel ABC variant with recombination (called RABC) is proposed to enhance the exploitation. RABC firstly employs a new search model inspired by the updating equation of particle swarm optimization (PSO). Then, both the new search model and the original ABC model are recombined to build a hybrid search model. The effectiveness of the proposed RABC is validated on ten famous benchmark optimization problems. Experimental results show RABC can significantly improve the quality of solutions and accelerate the convergence speed.References
Akay, B.; Karaboga, D. (2012); A modified Artificial bee colony algorithm for real-parameter optimization, Information Sciences, 192, 120-142, 2012. https://doi.org/10.1016/j.ins.2010.07.015
Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L.(2018); Bat algorithm with triangleflipping strategy for numerical optimization, International Journal of Machine Learning and Cybernetics, 9(2), 199-215, 2018. https://doi.org/10.1007/s13042-017-0739-8
Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Li, K. (2018); Teaching Clearning Cbased artificial bee colony for solar photovoltaic parameter estimation, Applied Energy, 212, 1578-1588, 2018. https://doi.org/10.1016/j.apenergy.2017.12.115
Cui, L.; Li, G.; Wang, Z.; Lin, Q.; Chen, J.; Lu, N.; Lu, J. (2017); A ranking-based adaptive artificial bee colony algorithm for global numerical optimization, Information Sciences, 417, 169-185, 2017. https://doi.org/10.1016/j.ins.2017.07.011
Cui, Z.H.; Sun, B.; Wang, G.G.; Xue, Y.; Chen, J.J. (2017); A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems, Journal of Parallel and Distributed Computing, 103, 42-52, 2017. https://doi.org/10.1016/j.jpdc.2016.10.011
Cui, L.; Li, G.; Zhu, Z.; Lin, Q.; Chen, J. (2017); A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization, Information Sciences, 414, 53-67, 2017. https://doi.org/10.1016/j.ins.2017.05.044
Gao, W.; Liu, S. (2012); A modified artificial bee colony algorithm, Computers & Operations Research, 39, 687-697, 2012. https://doi.org/10.1016/j.cor.2011.06.007
Huang, P.; Lin, F.; Xu, L.J.; Kang, Z.L.; Zhou, J.L.; Yu, J.S. (2017); Improved ACObsed seep coverage scheme considering data delivery, International Journal of Simulation Modelling, 16(2), 289-301, 2017. https://doi.org/10.2507/IJSIMM16(2)9.385
Karaboga, D. (2005); An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, engineering Faculty, Computer Engineering Department, 2005.
Karaboga, D.; Akay, B. (2009); A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. https://doi.org/10.1016/j.amc.2009.03.090
Kennedy, J.; Eberhart, R. (1995); Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, 1942-1948, 1995.
Kong, D.; Chang, T.; Dai, W.; Wang, Q.; Sun, H. (2018); An improved artificial bee colony algorithm based on elite group guidance and combined breadth-depth search strategy, Information Sciences, 442-443, 54-71, 2018. https://doi.org/10.1016/j.ins.2018.02.025
Li, G.; Cui, L.; Fu, X.; Wen, Z.; Lua, N.; Lu, J. (2017); Artificial bee colony algorithm with gene recombination for numerical function optimization, Applied Soft Computing, 52, 146-159, 2017. https://doi.org/10.1016/j.asoc.2016.12.017
Li, J.; Pan, Q.; Xie, S.; Wang, S. (2011); A Hybrid Artificial Bee Colony Algorithm for Flexible Job Shop Scheduling Problems, International Jotrnal of Computers Communications & Control, 6(2), 286-296, 2011. https://doi.org/10.15837/ijccc.2011.2.2177
Li, G.; Niu, P.; Xiao, X. (2012); Development and investigation of efficient artificial bee colony algorithm for numerical function optimization, Applied Soft Computing, 12(1), 320- 332, 2012. https://doi.org/10.1016/j.asoc.2011.08.040
Liu, J.J.; Zhu, H.Q.; Ma, Q.; Zhang, L.L.; Xu, H.L. (2015); An artificial bee colony algorithm with guide of global & local optima and asynchronous scaling factors for numerical optimization, Soft Computing, 37, 608-618, 2015. https://doi.org/10.1016/j.asoc.2015.08.021
Rajput, U.; Kumari, M. (2017); Mobile robot path planning with modified ant colony optimisation, International Journal of Bio-Inspired Computation, 9(2), 106-113, 2017. https://doi.org/10.1504/IJBIC.2017.083133
Song, X.; Yan, Q.; Zhao, M. (2017); An adaptive artificial bee colony algorithm based on objective function value information, Applied Soft Computing, 55, 384-401, 2017. https://doi.org/10.1016/j.asoc.2017.01.031
Sulaiman, N.; Mohamad-Saleh, J.; Abro, A.G. (2017); Robust variant of artificial bee colony (JA-ABC4b) algorithm, International Journal of Bio-Inspired Computation, 10(2), 99-108, 2017. https://doi.org/10.1504/IJBIC.2017.085896
Wang, H.;Wang, W.; H. Sun, H.; Rahnamayan, S. (2016); Firefly algorithm with random attraction, International Journal of Bio-Inspired Computation, 8(1), 33-41, 2016. https://doi.org/10.1504/IJBIC.2016.074630
Wang, H.; Rahnamayan, S.; Sun, H.; Omran, M.G.H. (2013); Gaussian bare-bones differential evolution, IEEE Transactions on Cybernetics, 43(2), 634-647, 2013. https://doi.org/10.1109/TSMCB.2012.2213808
Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. (2011); Enhancing particle swarm optimization using generalized opposition-based learning, Information Sciences, 181(20), 4699-4714, 2011. https://doi.org/10.1016/j.ins.2011.03.016
Wang, H.; Wu, Z.J.;Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.S. (2014); Multi-strategy ensemble artificial bee colony algorithm, Information Sciences, 279, 587-603, 2014. https://doi.org/10.1016/j.ins.2014.04.013
H. Wang; H. Sun; C, Li; S. Rahnamayan; J.S. Pan; Diversity enhanced particle swarm optimization with neighborhood search, Information Sciences, 223, 119-135, 2013. https://doi.org/10.1016/j.ins.2012.10.012
Wu, J.; Wu, G.D.; Wang, J.J. (2017); Flexible job-shop scheduling problem based on hybrid ACO algorithm, International Journal of Simulation Modelling, 16(3), 497-505, 2017. https://doi.org/10.2507/IJSIMM16(3)CO11
Xiang, W.; Li, Y.; Meng, X.; Zhang, C.; An, M. (2017); A grey artificial bee colony algorithm, Applied Soft Computing, 60, 1-17, 2017. https://doi.org/10.1016/j.asoc.2017.06.015
Xiang, W.; Li, Y.; He, R.; Gao, M.; An, M. (2018); A novel artificial bee colony algorithm based on the cosine similarity, Computers & Industrial Engineering, 115, 54-68, 2018. https://doi.org/10.1016/j.cie.2017.10.022
Xiang, Y.; Peng, Y.M.; Zhong, Y.B.; Chen, Z.Y.; Lu, X.W.; Zhong, X.J. (2014); A particle swarm inspired multi-elite artificial bee colony algorithm for real-parameter optimization, Computational Optimization and Applications, 57, 493-516, 2014. https://doi.org/10.1007/s10589-013-9591-2
Yaghoobi, T.; Esmaeili, E. (2017); An improved artificial bee colony algorithm for global numerical optimisation, International Journal of Bio-Inspired Computation, 9(4), 251-258, 2017. https://doi.org/10.1504/IJBIC.2017.084318
Zhang, M.; Wang, H.; Cui, Z.; Chen, J. (2017); Hybrid Multi-objective cuckoo search with dynamical local search, Memetic Computing, doi: 10.1007/s12293-017-0237-2, 2017. https://doi.org/10.1007/s12293-017-0237-2
Zhou, X.; Wu, Z.; Wang, H.; Rahnamayan, S. (2016); Gaussian bare-bones artificial bee colony algorithm[J], Soft Computing, 20(3), 907-924, 2016. https://doi.org/10.1007/s00500-014-1549-5
Zhu, G.; Kwong, S. (2010); Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation, 217, 3166-3173, 2010. https://doi.org/10.1016/j.amc.2010.08.049
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.