Multi-Objective Binary PSO with Kernel P System on GPU
Keywords:
parallel membrane computing, GPU based membrane computing, kernel P system, parallel multi-objective binary PSO, parallel kernel P system-multi objective binary PSOAbstract
Computational cost is a big challenge for almost all intelligent algorithms which are run on CPU. In this regard, our proposed kernel P system multi-objective binary particle swarm optimization feature selection and classification method should perform with an efficient time that we aimed to settle via using potentials of membrane computing in parallel processing and nondeterminism. Moreover, GPUs perform better with latency-tolerant, highly parallel and independent tasks. In this study, to meet all the potentials of a membrane-inspired model particularly parallelism and to improve the time cost, feature selection method implemented on GPU. The time cost of the proposed method on CPU, GPU and Multicore indicates a significant improvement via implementing method on GPU.References
Alelyani, S.; Tang, J.; Liu, H. (2013); Feature Selection for Clustering: A Review, Data Clustering: Algorithms and Applications, 29, 110-121, 2013.
Alhazov, A.; Freund, R.; Heikenwalder, H.; Oswald, M; Rogozhin, Y.; Verlan, S. (2012); Sequential P systems with regular control, Paper presented at the International Conference on Membrane Computing, 2012.
Cabarle, F. G. C.; Adorna, H.; Martinez-Del-Amor, M. A.; Perez-Jimenez, M. J. (2012); Improving GPU simulations of spiking neural P systems, Romanian Journal of Information Science and Technology, 15(1), 5-20, 2012.
Cecilia, J. M.; Garcia, J. M.; Guerrero, G. D.; Martinez-del-Amor, M. A.; Perez-Hurtado, I.; Perez-Jimenez, M. J. (2009), Simulation of P systems with active membranes on CUDA, Briefings in bioinformatics, 11(3), 313-322, 2009. https://doi.org/10.1093/bib/bbp064
Cecilia, J. M.; Garcia, J. M.; Guerrero, G. D.; Martinez-del-Amor, M. A.; Perez-Hurtado, I.; Perez-Jimenez, M. J. (2010); Simulating a P system based efficient solution to SAT by using GPUs, The Journal of Logic and Algebraic Programming, 79(6), 317-325, 2010. https://doi.org/10.1016/j.jlap.2010.03.008
Cano, A.; Zafra, A.; Ventura, S. (2010); Solving classification problems using genetic programming algorithms on GPUs, Hybrid Artificial Intelligence Systems, 17-26, 2010.
Dematte, L.; Prandi, D. (2010); GPU computing for systems biology, Briefings in bioinformatics, 11(3), 323-333, 2010. https://doi.org/10.1093/bib/bbq006
Elkhani, N.; Chandren Muniyandi, R. (2017); A Multiple Core Execution for Multiobjective Binary Particle Swarm Optimization Feature Selection Method with the Kernel P System Framework, Journal of Optimization, 2017.
Elkhani, N.; Muniyandi, R. C. (2015); Membrane computing to model feature selection of microarray cancer data, Proceedings of the ASE BigData & SocialInformatics, 2015.
Garcia-Quismondo, M.; Perez-Jimenez, M. J. Implementing ENPS by Means of GPUs for AI Applications, Proc. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence, 27-33, 2011.
Gheorghe, M.; Ceterchi, R.; Ipate, F.; Konur, S.; Lefticaru, R. (2018); Kernel P systems: from modelling to verification and testing, Theoretical Computer Science, 724, 45-60, 2018. https://doi.org/10.1016/j.tcs.2017.12.010
Gheorghe, M.; Ipate, F.; Dragomir, C.; Mierla, L.; Valencia-Cabrera, L.; Garcia-Quismondo, M.; Perez-Jimenez, M. J. (2013); Kernel P Systems-Version I, Membrane Computing, Eleventh Brainstorming Week, BWMC, 97-124, 2013.
Guzzi, P. H.; Agapito, G.; Cannataro, M. (2014); coreSNP: Parallel processing of microarray data, IEEE Transactions on Computers, 63(12), 2961-2974, 2014. https://doi.org/10.1109/TC.2013.176
Kentzoglanakis, K.; Poole, M. (2012); A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(2), 358-371, 2012. https://doi.org/10.1109/TCBB.2011.87
Li, J.-M.; Wang, X.-J.; He, R.-S.; Chi, Z.-X. (2007); An efficient fine-grained parallel genetic algorithm based on GPU-accelerated, Network and parallel computing workshops, 2007, NPC workshops, IFIP international conference on, 855-862, 2007.
Liu, J.; Iba, H.; Ishizuka, M. (2001); Selecting informative genes with parallel genetic algorithms in tissue classification, Genome Informatics, 12, 14-23, 2009.
Maroosi, A.; Muniyandi, R. C. (2013); Accelerated simulation of membrane computing to solve the n-queens problem on multi-core, International Conference on Swarm, Evolutionary, and Memetic Computing, 257-267, 2013.
Maroosi, A.; Muniyandi, R. C. (2013); Membrane computing inspired genetic, Journal of Computer Science, 9(2), 264-270, 2013. https://doi.org/10.3844/jcssp.2013.264.270
Mussi, L.; Daolio, F.; Cagnoni, S. (2011); Evaluation of parallel particle swarm optimization algorithms within the CUDA(TM) architecture, Information Sciences, 181(20), 4642-4657, 2011. https://doi.org/10.1016/j.ins.2010.08.045
Nobile, M.; Besozzi, D.; Cazzaniga, P.; Mauri, G.; Pescini, D. (2012); A GPU-based multiswarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series, Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 74-85, 2012.
Nobile, M. S.; Besozzi, D., Cazzaniga; P., Pescini, D.; Mauri, G. (2013); Reverse engineering of kinetic reaction networks by means of Cartesian Genetic Programming and Particle Swarm Optimization, Evolutionary Computation (CEC), 2013 IEEE Congress on, 1594- 1601, 2013.
Pospichal, P.; Jaros, J.; Schwarz, J. (2010); Parallel genetic algorithm on the cuda architecture, Applications of Evolutionary Computation, 442-451, 2010.
Sarkar, B. K.; Sana, S. S.; Chaudhuri, K. (2011); Selecting informative rules with parallel genetic algorithm in classification problem, Applied Mathematics and Computation, 218(7), 3247-3264, 2011. https://doi.org/10.1016/j.amc.2011.08.065
Slavik, M.; Zhu, X.; Mahgoub, I.; Shoaib, M. (2009); Parallel Selection of Informative Genes for Classification, Bioinformatics and Computational Biology. Lecture Notes in Computer Science, 5462, 388-399, 2009.
Van Nguyen, D. K.; Gioiosa, G. (2010); A region-oriented hardware implementation for membrane computing applications, Membrane Computing. WMC 2009. Lecture Notes in Computer Science, 5957, 385-409, 2009.
Zhang, G.; Perez-Jimenez, M. J.; Gheorghe, M. (2017), Real-life applications with membrane computing, (Vol. 25): Springer, 2017. https://doi.org/10.1007/978-3-319-55989-6
Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q. (2013), A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems, Applied Soft Computing, 13(3), 1528-1542, 2013. https://doi.org/10.1016/j.asoc.2012.05.032
Zhou, Y.; Tan, Y. (2009); GPU-based parallel particle swarm optimization, Evolutionary Computation, 2009, CEC'09. IEEE Congress on, 1493-1500, 2009.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.