Model Predictive Control of Stochastic Linear Systems with Probability Constraints

Authors

Keywords:

probability constraints, stochastic systems, linear systems, control

Abstract

This paper presents a strategy for computing model predictive control of linear Gaussian noise systems with probability constraints. As usual, constraints are taken on the system state and control input. The novelty relies on setting bounds on the underlying cumulative probability distribution, and showing that the model predictive control can be computed in an efficient manner through these novel bounds– an application confirms this assertion. Indeed real-time experiments were carried out to control a direct current (DC) motor. The corresponding data show the effectiveness and usefulness of the approach.

References

Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. (2006). Nonlinear programming: theory and algorithms, 3rd edn., Wiley-Interscience, New Jersey, 2006. https://doi.org/10.1002/0471787779

Bernardini, D.; Bemporad, A. (2012). Stabilizing model predictive control of stochastic constrained linear systems, IEEE Trans. Autom. Control, 57, 1468-1480, 2012. https://doi.org/10.1109/TAC.2011.2176429

Blackmore, L.; Ono, M. (2009). Convex chance constrained predictive control without sampling, In: AIAA Guidance, Navigation and Control Conference, Chicago, Illinois, USA, 1-17, 2009. https://doi.org/10.2514/6.2009-5876

Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory, SIAM, Philadelphia, 1994. https://doi.org/10.1137/1.9781611970777

Cannon, M.; Kouvaritakis, B.; Rakovic, S.; Cheng Q. (2011). Stochastic tubes in model predictive control with probabilistic constraints, IEEE Trans. Autom. Control, 56, 194-200, 2011. https://doi.org/10.1109/TAC.2010.2086553

Cao, G.; Lai, E.M.-K.; Alam, F. (2017). Gaussian process model predictive control of unknown non-linear systems, IET Control Theory Appl., 11, 703-713, 2017. https://doi.org/10.1049/iet-cta.2016.1061

Caruntu, C.F.; Balau, A.E.; Lazar, M.; van den Bosch, P.P.J.; Di Cairano, S. (2016). Driveline oscillations damping: A tractable predictive control solution based on a piecewise affine model, Nonlinear Analysis: Hybrid Systems, 19, 168-185, 2016. https://doi.org/10.1016/j.nahs.2015.10.001

Costa Junior, A.G.; Riul J.A.; Montenegro, P.H.M. (2016). Application of the subspace identification method using the N4SID technique for a robotic manipulator, IEEE Latin America Transactions, 14, 1588-1993, 2016. https://doi.org/10.1109/TLA.2016.7483487

Farina, M.; Giulioni, L.; Scattolini, R. (2016). Stochastic linear model predictive control with chance constraints-A review, Journal of Process Control, 44, 53-67, 2016. https://doi.org/10.1016/j.jprocont.2016.03.005

Farina, M.; Giulioni, L.; Magni, L.; Scattolini, R. (2015). An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55, 140-149, 2015. https://doi.org/10.1016/j.automatica.2015.02.039

Farina, M.; Scattolini, R. (2016). Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70, 258-265, 2016. https://doi.org/10.1016/j.automatica.2016.04.008

Hashorva, E.; Hüsler, J. (2003). On multivariate Gaussian tails, Annals of the Institute of Statistical Mathematics, 55, 507-522, 2003. https://doi.org/10.1007/BF02517804

Katayama, T. (2005). Subspace methods for system identification, communications and control engineering, Springer-Verlag, London, 2005. https://doi.org/10.1007/1-84628-158-X

Kwon, W.H., Han, S.H. (2005). Receding horizon control: model predictive control for state models, Springer-Verlag, New York, 2005.

Li, P.; Wendt, M.; Wozny, G. (2002). A probabilistically constrained model predictive controller, Automatica, 38, 1171-1176, 2002. https://doi.org/10.1016/S0005-1098(02)00002-X

Li, J.W.; Li, D.W.; Xi, Y.G. (2017). H1 predictive control with probability constraints for linear stochastic systems, IET Control Theory Appl., 11, 557-566, 2017. https://doi.org/10.1049/iet-cta.2016.0915

Lu, D.; Li, W.V. (2009). A note on multivariate Gaussian estimates, Journal of Mathematical Analysis and Applications,354, 704-707, 2009. https://doi.org/10.1016/j.jmaa.2009.01.046

Oliveira, R.C.L.; Vargas, A.N.; do Val, J.B.R.; Peres, P.L.D. (2014). Mode-independent H2-control of a DC motor modeled as a Markov jump linear system, IEEE Transactions on Control Systems Technology, 22, 1915-1919, 2014. https://doi.org/10.1109/TCST.2013.2293627

Rubagotti, M.; Patrinos, P.; Guiggiani, A.; Bemporad, A. (2016). Real-time model predictive control based on dual gradient projection: theory and fixed-point FPGA implementation, Int. J. Robust Nonlinear Control, 26, 3292-3310, 2016. https://doi.org/10.1002/rnc.3507

Schwarm, A.T.; Nikolaou, M. (1999). Chance-constrained model predictive control, AIChE Journal, 45, 1743-1752, 1999. https://doi.org/10.1002/aic.690450811

Vargas, A.N.; Costa, E.F.; do Val, J.B.R. (2013). On the control of Markov jump linear systems with no mode observation: application to a DC motor device, Int. J. Robust Nonlinear Control, 23, 1136-1950, 2013. https://doi.org/10.1002/rnc.2911

Vargas, A. N.; do Val, J.B.R. (2010). Average cost and stability of time-varying linear systems, IEEE Trans. Autom. Control, 55, 714-720, 2010. https://doi.org/10.1109/TAC.2010.2040423

Wang, S.; Yu, M.; Sun, X. (2015). Robust H1 control for time-delay networked control systems with probability constraints, IET Control Theory Appl., 9, 482-2489, 2015. https://doi.org/10.1049/iet-cta.2015.0143

Yang, H.; Guo, M.C.; Xia, Y.; Cheng, L. (2018). Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints, IET Control Theory Appl., 12, 206-214, 2018. https://doi.org/10.1049/iet-cta.2017.0395

Yan, J.; Bitmead, R.R. (2005). Incorporating state estimation into model predictive control and its application to network traffic control, Automatica, 41, 595-604, 2005. https://doi.org/10.1016/j.automatica.2004.11.022

Zeilinger, M.N.; Raimondo, D.M.; Domahidi, A.; Morari, M.; Jones, C.N. (2014). Flocking of multi-agents with a virtual leader, Automatica, 50, 683-694, 2014. https://doi.org/10.1016/j.automatica.2013.11.019

Published

2018-11-29

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.