Combination of Evidential Sensor Reports with Distance Function and Belief Entropy in Fault Diagnosis
Keywords:
Dempster-Shafer evidence theory, sensor data fusion, fault diagnosis, evidence distance, belief entropy, information volumeAbstract
Although evidence theory has been applied in sensor data fusion, it will have unreasonable results when handling highly conflicting sensor reports. To address the issue, an improved fusing method with evidence distance and belief entropy is proposed. Generally, the goal is to obtain the appropriate weights assigning to different reports. Specifically, the distribution difference between two sensor reports is measured by belief entropy. The diversity degree is presented by the combination of evidence distance and the distribution difference. Then, the weight of each sensor report is determined based on the proposed diversity degree. Finally, we can use Dempster combination rule to make the decision. A real application in fault diagnosis and an example show the efficiency of the proposed method. Compared with the existing methods, the method not only has a better performance of convergence, but also less uncertainty.References
Abellan, J. (2017). Analyzing properties of Deng entropy in the theory of evidence, Chaos Solitons & Fractals, 95, 195-199, 2017. https://doi.org/10.1016/j.chaos.2016.12.024
An, J.Y.; Hu, M.; Fu, L.; Zhan, J.W. (2019). A novel fuzzy approach for combining uncertain conflict evidences in the Dempster-Shafer theory, IEEE Access, 7, 7481-7501, 2019. https://doi.org/10.1109/ACCESS.2018.2890419
Cui, H.; Liu, Q.; Zhang, J.; Kang, B. (2019). An improved Deng entropy and its application in pattern recognition, IEEE Access, 7,18284-18292, 2019. https://doi.org/10.1109/ACCESS.2019.2896286
Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematics and Statistics, 38(2), 325-339, 1967. https://doi.org/10.1214/aoms/1177698950
Deng, Y.; Shi, W.K.; Zhu, Z.F.; Liu, Q. (2004). Combining belief functions based on distance of evidence, Decision Support Systems, 38(3), 489-493, 2004. https://doi.org/10.1016/j.dss.2004.04.015
Deng, Y. (2106). Deng entropy, Chaos, Solitons & Fractals, 91, 549-553, 2016. https://doi.org/10.1016/j.chaos.2016.07.014
Deng, W.; Deng, Y. (2018). Entropic methodology for entanglement measures, Physica A: Statistical Mechanics and its Applications, 512, 693-697, 2018. https://doi.org/10.1016/j.physa.2018.07.044
Deng, X.Y.; Deng, Y. (2019). D-AHP method with different credibility of information, Soft Computing, 23(2), 683-691, 2019. https://doi.org/10.1007/s00500-017-2993-9
Deng, X.Y.; Jiang, W. (2019). D number theory based game-theoretic framework in adversarial decision making under a fuzzy environment, International Journal of Approximate Reasoning, 106, 194-213, 2019. https://doi.org/10.1016/j.ijar.2019.01.007
Deng, X.Y.; Jiang, W.; Wang, Z. (2019). Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution, Applied Mathematics and Computation, 340, 101-112, 2019. https://doi.org/10.1016/j.amc.2018.08.032
Dong, Y.K.; Wang, J.Y.; Chen, F.H.; Hu, Y.; Deng, Y. (2017). Location of Facility Based on Simulated Annealing and "ZKW" Algorithms, Mathematical Problems in Engineering, 2017, 9, 2017. https://doi.org/10.1155/2017/4628501
Dubois, D.; Prade, H. (1988). Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence, 4(3), 244-264, 1988. https://doi.org/10.1111/j.1467-8640.1988.tb00279.x
Dutta, P. (2017). Modeling of variability and uncertainty in human health risk assessment, MethodsX, 4, 76-85, 2017. https://doi.org/10.1016/j.mex.2017.01.005
Dutta, P. (2018). An uncertainty measure and fusion rule for conflict evidences of big data via Dempster-Shafer theory, International Journal of Image and Data Fusion, 9(2), 152-169, 2018. https://doi.org/10.1080/19479832.2017.1391336
Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017. https://doi.org/10.15837/ijccc.2017.6.3111
Fan, X.F.; Zuo, M.J. (2006). Fault diagnosis of machines based on D-S evidence theory. Part 1: D-S evidence theory and its improvement, Pattern Recognition Letters, 27(5), 366-376, 2006. https://doi.org/10.1016/j.patrec.2005.08.025
Fei, L.G.; Deng, Y. (2019). A new divergence measure for basic probability assignment and its applications in extremely uncertain environments, International Journal of Intelligent Systems, 34(4), 584-600, 2019. https://doi.org/10.1002/int.22066
Fei, L.; Deng, Y. (2018). Identifying influential nodes in complex networks based on the inverse-square law, Physica A: Statistical Mechanics and its Applications, 512, 1044-1059, 2018. https://doi.org/10.1016/j.physa.2018.08.135
Gao, X.; Deng, Y. (2019). The negation of basic probability assignment, IEEE Access, 7, 10.1109/ACCESS.2019.2901932, 2019. https://doi.org/10.1109/ACCESS.2019.2901932
Haenni, R. (2002). Are alternatives to Dempster's rule of combination real alternatives?: Comments on: About the belief function combination and the conflict management problem--Lefevre et al, Information Fusion, 3(3), 237-239, 2002. https://doi.org/10.1016/S1566-2535(02)00076-3
Han, Y.; Deng, Y. (2019). A novel matrix game with payoffs of Maxitive Belief Structure, International Journal of Intelligent Systems, 34(4), 690-706, 2019. https://doi.org/10.1002/int.22072
Han, Y.; Deng, Y. (2018). A hybrid intelligent model for Assessment of critical success factors in high risk emergency system, Journal of Ambient Intelligence and Humanized Computing, 9(6), 1933-1953, 2018. https://doi.org/10.1007/s12652-018-0882-4
Han, Y.; Deng, Y. (2018). An Evidential Fractal AHP target recognition method, Defence Science Journal, 68(4), 367-373, 2018. https://doi.org/10.14429/dsj.68.11737
Jaunzemis, A.D.; Holzinger, M.J.; Chan, M.W.; Shenoy, P.P. (2019). Evidence gathering for hypothesis resolution using judicial evidential reasoning, Information Fusion, 49, 26-45, 2019. https://doi.org/10.1016/j.inffus.2018.09.010
Jiang, W.; Wei, B.Y.; Xie, C.H.; Zhou, D.Y. (2016). An evidential sensor fusion method in fault diagnosis, Advances in Mechanical Engineering, 8(3), 1-7, 2016. https://doi.org/10.1177/1687814016641820
Jiang, W. (2018). A correlation coefficient for belief functions, International Journal of Approximate Reasoning, 103, 94-106, 2018. https://doi.org/10.1016/j.ijar.2018.09.001
Jiang, W.; Wang, S.Y. (2017). An Uncertainty Measure for Interval-valued Evidences, International Journal of Computers Communications & Control, 12(5), 631-644, 2017. https://doi.org/10.15837/ijccc.2017.5.2950
Jin, L.Q.; Fang, X. (2017). Interval Certitude Rule Base Inference Method using the Evidential Reasoning, International Journal of Computers Communications & Control, 12(6), 2017. https://doi.org/10.15837/ijccc.2017.6.2800
Jousselme, A.L.; Grenier, D.; Bossé, É, (2001). A new distance between two bodies of evidence, Information Fusion, 2(2), 91-101, 2001. https://doi.org/10.1016/S1566-2535(01)00026-4
Kang, B.Y.; Zhang, P.D.; Gao, Z.Y.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. (2019). Environmental assessment under uncertainty using Dempster-Shafer theory and Z-numbers, Journal of Ambient Intelligence and Humanized Computing, https://doi.org/10.1007/s12652-019-01228-y, 2019. https://doi.org/10.1007/s12652-019-01228-y
Kang, B.Y.; Deng, Y.; Hewage, K.; Sadiq, R. (2019). A method of measuring uncertainty for Z-number, IEEE Transactions on Fuzzy Systems, 27(4), 731-738, 2019. https://doi.org/10.1109/TFUZZ.2018.2868496
Kuzemsky, A.L. (2018). Temporal evolution, directionality of time and irreversibility, Rivista Del Nuovo Cimento, 41(10), 513-574, 2018.
Lefevre, E.; Colot, O.; Vannoorenberghe, P. (2002). Belief function combination and conflict management, Information fusion, 3(2), 149-162, 2002. https://doi.org/10.1016/S1566-2535(02)00053-2
Li, M.Z.; Zhang, Q.; Deng, Y. (2018). Evidential identification of influential nodes in network of networks, Chaos, Solitons & Fractals, 117, 283-296, 2018. https://doi.org/10.1016/j.chaos.2018.04.033
Li, Y.X.; Deng, Y. (2018). Generalized Ordered Propositions Fusion Based on Belief Entropy, International Journal of Computers Communications & Control, 13(5), 792-807, 2018. https://doi.org/10.15837/ijccc.2018.5.3244
Liu, C.;Li, L.; Wang, Z.; Wang, R.(2019). Pattern transitions in a vegetation system with cross-diffusion, Applied Mathematics and Computation, 342, 255-262, 2019. https://doi.org/10.1016/j.amc.2018.09.039
Liu, H.; Dzitac, I.; Guo, S.(2018). Reduction of Conditional Factors in Causal Analysis, International Journal of Computers Communications & Control, 13(3), 383-390, 2018. https://doi.org/10.15837/ijccc.2018.3.3252
Meng, D.; Yang, S.; Zhang, Y.; Zhu, S (2018). Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model, Fatigue & Fracture of Engineering Materials & Structures, 10.1111/ffe.12906, 2018. https://doi.org/10.1111/ffe.12906
Meng, D.; Liu, M.; Yang, S.; Zhang, H.; Ding, R. (2018). A fluid-structure analysis approach and its application in the uncertainty-based multidisciplinary design and optimization for blades, Advances in Mechanical Engineering, 10(6), 1687814018783410, 2018. https://doi.org/10.1177/1687814018783410
Meng, D.; Li, Y.; Zhu, S.; Lv, G.; Correia, J.; de Jesus, A.(2019). An Enhanced Reliability Index Method and Its Application in Reliability-Based Collaborative Design and Optimization, Mathematical Problems in Engineering, https://doi.org/10.1155/2019/4536906, 2019. https://doi.org/10.1155/2019/4536906
Mo, H.M.; Deng, Y. (2019). An evaluation for sustainable mobility extended by D numbers, Technological and Economic Development of Economy, Accepted, 2019.
Murphy, C.K. (2000); Combining belief functions when evidence conflicts, Decision Support Systems, 29(1), 1-9, 2000. https://doi.org/10.1016/S0167-9236(99)00084-6
Pan, L.P.; Deng, Y. (2018). A New Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Belief Function and Plausibility Function, Entropy, 20(11), 842, 2018. https://doi.org/10.3390/e20110842
Paté-Cornell, M.E. (1990). Organizational Aspects of Engineering System, Safety Science, 250, 1210-16, 1990. https://doi.org/10.1126/science.250.4985.1210
Rong, H.; Ge, M.; Zhang, G.; Zhu, M. (2018). An approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural p systems, International Journal of Computers Communications & Control, 13(4), 521-536, 2018. https://doi.org/10.15837/ijccc.2018.4.3220
Sabahi, F. (2016). A Novel Generalized Belief Structure Comprising Unprecisiated Uncertainty Applied to Aphasia Diagnosis, Journal of Biomedical Informatics, 62, 66-77, 2016. https://doi.org/10.1016/j.jbi.2016.06.004
Seiti, H.; Hafezalkotob, A. (2019). Developing the R-TOPSIS methodology for risk-based preventive maintenance planning: A case study in rolling mill company, Computers & Industrial Engineering, 128, 622-636, 2019. https://doi.org/10.1016/j.cie.2019.01.012
Seiti, H.; Hafezalkotob, A.; Martinez, L. (2019). R-numbers, a new risk modeling associated with fuzzy numbers and its application to decision making, Information Sciences, 483, 206- 231, 2019. https://doi.org/10.1016/j.ins.2019.01.006
Shafer, G. (1967). A Mathematical Theory of Evidence, Princeton University Press, 1967.
Smets, P. (1993). Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning, 9(1), 1-35, 1993. https://doi.org/10.1016/0888-613X(93)90005-X
Smets, P.; Kennes, R. (1994). The transferable belief model, Artificial Intelligence, 66(2), 191-234, 1994. https://doi.org/10.1016/0004-3702(94)90026-4
Song, Y.T.; Deng, Y. (2019). A new method to measure the divergence in evidential sensor data fusion, International Journal of Distributed Sensor Networks, 15(4), DOI: 10.1177/1550147719841295, 2019. https://doi.org/10.1177/1550147719841295
Su, X.Y.; Li, L.S.; Shi, F.J.; Qian, H. (2018). Research on the Fusion of Dependent Evidence Based on Mutual Information, IEEE Access, 6, 71839-71845, 2018. https://doi.org/10.1109/ACCESS.2018.2882545
Su, X.Y.; Li, L.S.; Qian, H.; Sankaran, M.; Deng, Y. (2019). A new rule to combine dependent bodies of evidence, Soft Computing, https://doi.org/10.1007/s00500-019-03804-y, 2019. https://doi.org/10.1007/s00500-019-03804-y
Sun, R.L.; Deng, Y. (2019); A new method to identify incomplete frame of discernment in evidence theory, IEEE Access, 7(1), 15547-15555, 2019. https://doi.org/10.1109/ACCESS.2019.2893884
Sun, R.L.; Deng, Y. (2019). A new method to determine generalized basic probability assignment in the open world, IEEE Access, 7(1), accepted, 2019. https://doi.org/10.1109/ACCESS.2019.2911626
Vandoni, J.; Aldea, E.; Le Hégarat-Mascle, S. (2019). Evidential query-by-committee active learning for pedestrian detection in high-density crowds, International Journal of Approximate Reasoning, 104, 166-184, 2019. https://doi.org/10.1016/j.ijar.2018.11.007
Wang, T.; Zhang, G.X.; Rong, H.N.; Pérez-Jiménez, M.J. (2014). Application of fuzzy reasoning spiking neural P systems to fault diagnosis, International Journal of Computers Communications & Control, 9(6), 786-799, 2014. https://doi.org/10.15837/ijccc.2014.6.1485
Wang, Y.; Wang, S.; Deng, Y. (2019). A modified efficiency centrality to identify influential nodes in weighted networks, Pramana, 68(4), 68, 2019. https://doi.org/10.1007/s12043-019-1727-1
Wang, Y.J.; Deng, Y. (2018). Base belief function: an efficient method of conflict management, Journal of Ambient Intelligence and Humanized Computing, https://doi.org/10.1007/s12652-018-1099-2, 2018. https://doi.org/10.1007/s12652-018-1099-2
Wang, J.; Qiao, K.Y.; Zhang, Z.Y. (2019). An improvement for combination rule in evidence theory, Future Generation Computer Systems, 91, 1-9, 2019. https://doi.org/10.1016/j.future.2018.08.010
Wei, B.; Deng, Y. (2018). A cluster-growing dimension of complex networks: From the view of node closeness centrality, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2019.01.125, 2019. https://doi.org/10.1016/j.physa.2019.01.125
Xiao, F.Y. (2018). A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis, IEEE Access, 6, 25300-25312, 2018. https://doi.org/10.1109/ACCESS.2018.2820099
Xiao, F.Y. (2018); A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers, Engineering Applications of Artificial Intelligence, 71(2018), 216-225, 2018. https://doi.org/10.1016/j.engappai.2018.03.002
Xiao, F.Y. (2019). A multiple criteria decision-making method based on D numbers and belief entropy, International Journal of Fuzzy Systems, https://doi.org/10.1007/s40815-019- 00620-2, 2019.
Xiao, F.Y.; Ding, W.P. (2019). A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers, Applied Soft Computing, 74, DOI: 10.1016/j.asoc.2019.03.043, 2019. https://doi.org/10.1016/j.asoc.2019.03.043
Xu, X.B.; Li, S.B.; Song, X.J.; Wen, C.L.; Xu, D.L. (2016). The optimal design of industrial alarm systems based on evidence theory, Control Engineering Practice, 46, 142-156, 2016. https://doi.org/10.1016/j.conengprac.2015.10.014
Xu, H.; Deng, Y. (2019). Dependent Evidence Combination Based on DEMATEL Method, International Journal of Intelligent Systems, 34, 10.1002/int.22107, 2019. https://doi.org/10.1002/int.22107
Xu, P.; Zhang, R.; Deng, Y. (2019). A Novel Visibility Graph Transformation of Time Series into Weighted Networks, Chaos, Solitons & Fractals, 2018, 201-208, 2018. https://doi.org/10.1016/j.chaos.2018.07.039
Yager, R.R. (1987). On the Dempster-Shafer framework and new combination rules, Information Sciences, 41(2), 93-137, 1987. https://doi.org/10.1016/0020-0255(87)90007-7
Yang, H.C.; Deng, Y.; Jones, J. (2018). Network Division Method Based on Cellular Growth and Physarum-inspired Network Adaptation, International Journal of Unconventional Computing, 13(6), 477-491, 2018.
Yin, L.K.; Deng, Y. (2018). Toward uncertainty of weighted networks: An entropy-based model, Physica A: Statistical Mechanics and its Applications, 508, 176-186, 2018. https://doi.org/10.1016/j.physa.2018.05.067
Yin, L.K.; Deng, X.Y.; Deng, Y. (2019). The negation of a basic probability assignment, IEEE Transactions on Fuzzy Systems, 27(1), 135-143, 2019. https://doi.org/10.1109/TFUZZ.2018.2871756
Zadeh, L.A. (1965). Fuzzy Sets, Information and Control, 8(3), 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L.A. (1986). A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination, AI magazine, 7(2), 85, 1986.
Zavadskas, E.K.; Antucheviciene, J.; Hajiagha, S.H.R. (2015). The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering, Mathematical Problems in Engineering, 2015, 13, 2015. https://doi.org/10.1155/2015/560690
Zavadskas, E.K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. (2016). Hybrid multiple-criteria decision-making methods: A review of applications in engineering, Scientia Iranica. Transaction A, Civil Engineering, 23(1), 1, 2016. https://doi.org/10.24200/sci.2016.2093
Zhang, L.M.; Wu, X.G.; Qin, Y.W.; Skibniewski, M.J.; Liu, W.L. (2016). Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage, Risk Analysis, 36(2), 278-301, 2016. https://doi.org/10.1111/risa.12448
Zhang, L.M.; Wu, X.G.; Zhu, H.P.; AbouRizk, S.M. (2017). Perceiving safety risk of buildings adjacent to tunneling excavation: An information fusion approach, Automation in Construction, 73, 88-101, 2017. https://doi.org/10.1016/j.autcon.2016.09.003
Zhang, W.Q.; Deng, Y. (2018). Combining conflicting evidence using the DEMATEL method, Soft computing, https://doi.org/10.1007/s00500-018-3455-8, 2018. https://doi.org/10.1007/s00500-018-3455-8
Zhang, H.P.; Deng, Y. (2018). Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory, Advances in Mechanical Engineering, 10(11), DOI: 10.1177/1687814018809184, 2018. https://doi.org/10.1177/1687814018809184
Zhao, D.; Wang, L.; Wang, Z.; Xiao, G. (2019). Virus Propagation and Patch Distribution in Multiplex Networks: Modeling, Analysis, and Optimal Allocation, IEEE Transactions on Information Forensics and Security, 14(7), 1755-1767, 2019. https://doi.org/10.1109/TIFS.2018.2885254
Zhu, W.B.; Yang, H.C.; Jin, Y.; Liu, B.Y. (2017). A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network, Mathematical Problems in Engineering, 10, 2017. https://doi.org/10.1155/2017/6191035
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.