Wearable System for Daily Activity Recognition Using Inertial and Pressure Sensors of a Smart Band and Smart Shoes

Authors

  • Phuc Huu Truong Korean Institute of Industrial Technology
  • Sujeong You Korean Institute of Industrial Technology
  • Sang-Hoon Ji Korean Institute of Industrial Technology
  • Gu-Min Jeong Kookmin University

Keywords:

Human Activity Recognition (HAR), Daily Activity Recognition (DAR), Daily Living Activity (DLA), Feature Selection, Smart-Band, Smart-Shoes

Abstract

Human Activity Recognition (HAR) is a challenging task in the field of human-related signal processing. Owing to the development of wearable sensing technology, an emerging research approach in HAR is to identify user-performed tasks by using data collected from wearable sensors. In this paper, we propose a novel system for monitoring and recognizing daily living activities using an off-the-shelf smart band and two smart shoes. The system aims at providing a useful tool for solving problems regarding body part placement, fusion of multimodal sensors and feature selection for a specific set of activities. The system collects inertial and plantar pressure data at wrist and foot to analyze and then, extract, select important features for recognition. We construct and compare two predictive models of classifying activities from the reduced feature set. A comparison of the classification for each wearable device and a fusion scheme is provided to identify the best body part for activity recognition: either the wrist or the feet. This comparison also demonstrated the effective HAR performance of the proposed system.

References

Banos, O.; Damas, M.; Pomares, H.; Prieto, A.; Rojas, I. (2012). Daily living activity recognition based on statistical feature quality group selection, Expert Syst. Appl., 39, 8013- 8021, 2012. https://doi.org/10.1016/j.eswa.2012.01.164

Banos, O.; Moral-Munoz, J.; Diaz-Reyes, I.; Arroyo-Morales, M.; Damas, M.; Herrera- Viedma, E.; Hong, C.; Lee, S.; Pomares, H.; Rojas, I.; Villalonga, C. (2015). mDurance: A novel mobile health system to support trunk endurance assessment, Sensors, 15, 13159- 13183, 2015. https://doi.org/10.3390/s150613159

Bao, L.; Intille, S.S. (2004). Pervasive Computing; Vol. 3001, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1 - 17, 2004. https://doi.org/10.1007/978-3-540-24646-6_1

Bruno, B.; Mastrogiovanni, F.; Sgorbissa, A. (2015). Wearable inertial sensors: Applications, challenges, and public test benches, IEEE Robot. Autom. Mag., 22, 116-124, 2015. https://doi.org/10.1109/MRA.2015.2448279

Bulling, A.; Blanke, U.; Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors, ACM Comput. Surv., 46, 1-33, 2014. https://doi.org/10.1145/2499621

Chen, Y.P.; Yang, J.Y.; Liou, S.; Lee, G.; Wang, J.S. (2008). Online classifier construction algorithm for human activity detection using a tri-axial accelerometer, Appl. Math. Comput., 205, 849-860, 2008. https://doi.org/10.1016/j.amc.2008.05.099

Concepcion., A. D.L.; Morillo, S.; Gonzalez, A.; Ramírez, O. (2014). Discrete techniques applied to low-energy mobile human activity recognition. A new approach, Expert Syst. Appl., 41, 6138-6146, 2014. https://doi.org/10.1016/j.eswa.2014.04.018

Dzitac, S ; Vesselenyi, T. ; Popper, L. et al. (2010). Fuzzy Algorithm for Human Drowsiness Detection Devices, Studies in Informatics and Control, 19(4), 419-426, 2010. https://doi.org/10.24846/v19i4y201010

Gao, L.; Bourke, A.; Nelson, J. (2014). Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems, Med. Eng. Phys., 36, 779-785, 2014. https://doi.org/10.1016/j.medengphy.2014.02.012

González, S.; Sedano, J.; Villar, J.R.; Corchado, E.; Herrero, Ã.; Baruque, B. (2015). Features and models for human activity recognition, Neurocomputing, 167, 52-60, 2015. https://doi.org/10.1016/j.neucom.2015.01.082

Gyorbiró, N.; Fábián, Ã.; Hományi, G. (2008). An activity recognition system for mobile phones, Mob. Networks Appl., 14, 82-91, 2008. https://doi.org/10.1007/s11036-008-0112-y

Huynh, T.; Schiele, B. (2007). Towards less supervision in activity recognition from wearable sensors. 10th IEEE Int. Symp. Wearable Comput., 3-10, 2006. https://doi.org/10.1109/ISWC.2006.286336

Jeong, G.M.; Truong, P.H.; Choi, S.I. (2017). Classification of three types of walking activities regarding stairs using plantar pressure sensors, IEEE Sens. J., 17, 2638-2639, 2017. https://doi.org/10.1109/JSEN.2017.2682322

Jia, Y. (2009). Diatetic and exercise therapy against diabetes mellitus, 2009 Second Int. Conf. Intell. Networks Intell. Syst., 693-696, 2009. https://doi.org/10.1109/ICINIS.2009.177

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. Proc. Eur. Conf. Mach. Learn., 171-182, 1994. https://doi.org/10.1007/3-540-57868-4_57

Lara, O.; Labrador, M. (2013). A survey on human activity recognition using wearable sensors, IEEE Commun. Surv. Tutorials, 15, 1192-1209, 2013. https://doi.org/10.1109/SURV.2012.110112.00192

Laudanski, A.; Brouwer, B.; Li, Q. (2015). Activity classification in persons with stroke based on frequency features, Med. Eng. Phys., 37, 180-186, 2015. https://doi.org/10.1016/j.medengphy.2014.11.008

Liu, Y.; Nie, L.; Liu, L.; Rosenblum, D. (2016). From action to activity: Sensor-based activity recognition, Neurocomputing, 181, 108-115, 2016. https://doi.org/10.1016/j.neucom.2015.08.096

Lowe, S.; ÓLaighin, G. (2014). Monitoring human health behaviour in one's living environment: A technological review, Med. Eng. Phys., 36, 147-168, 2014. https://doi.org/10.1016/j.medengphy.2013.11.010

Mannini, A.; Sabatini, A.M. (2010). Machine learning methods for classifying human physical activity from on-body accelerometers, Sensors, 10, 1154-1175, 2010. https://doi.org/10.3390/s100201154

Mocanu, I.; Scarlat, G.; Rusu, L.; Pandelica, I.; Cramariuc, B. (2018). Indoor Localisation through Probabilistic Ontologies, International Journal of Computers Communications & Control, 13(6), 988-1006, 2018. https://doi.org/10.15837/ijccc.2018.6.3022

Mukhopadhyay, S.C. (2015). Wearable sensors for human activity monitoring: A review, IEEE Sens. J., 15, 1321-1330, 2015. https://doi.org/10.1109/JSEN.2014.2370945

Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Büla, C.J.; Robert, P. (2003). Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly, IEEE Trans. Biomed. Eng., 50, 711-723, 2003. https://doi.org/10.1109/TBME.2003.812189

Nguyen, L.; Zeng, M.; Tague, P.; Zhang, J. (2015). Recognizing new activities with limited training data, Proc. 2015 ACM Int. Symp. Wearable Comput. - ISWC '15, ACM Press: New York, USA, 67-74, 2015. https://doi.org/10.1145/2802083.2808388

Nguyen, M.; Fan, L.; Shahabi, C. (2015). Activity Recognition Using Wrist-Worn Sensors for Human Performance Evaluation, 2015 IEEE Int. Conf. Data Min. Work., 164-169, 2015. https://doi.org/10.1109/ICDMW.2015.199

Pei, L.; Guinness, R.; Chen, R.; Liu, J.; Kuusniemi, H.; Chen, Y.; Chen, L.; Kaistinen, J. (2013). Human behavior cognition using smartphone sensors, Sensors, 13, 1402-1424, 2013. https://doi.org/10.3390/s130201402

Reyes-Ortiz, J.L.; Oneto, L.; Samà , A.; Parra, X.; Anguita, D. (2016). Transition-aware human activity recognition using smartphones, Neurocomputing, 171, 754-767, 2016. https://doi.org/10.1016/j.neucom.2015.07.085

Rodgers, M.; Pai, V.; Conroy, R. (2015). Recent advances in wearable sensors for health monitoring, IEEE Sens. J., 15, 3119-3126, 2015. https://doi.org/10.1109/JSEN.2014.2357257

Ronao, C.A.; Cho, S.b. (2016). Human activity recognition with smartphone sensors using deep learning neural networks, Expert Syst. Appl., 59, 235-244, 2016. https://doi.org/10.1016/j.eswa.2016.04.032

San-Segundo, R.; Lorenzo-Trueba, J.; Martínez-González, B.; Pardo, J. (2016). Segmenting human activities based on HMMs using smartphone inertial sensors, Pervasive Mob. Comput., 30, 84-96, 2016. https://doi.org/10.1016/j.pmcj.2016.01.004

Sazonov, E.S.; Fulk, G.; Hill, J.; Schutz, Y.; Browning, R. (2011). Monitoring of posture allocations and activities by a shoe-based wearable sensor, IEEE Trans. Biomed. Eng., 58, 983-990, 2011. https://doi.org/10.1109/TBME.2010.2046738

Storm, F.; Heller, B.; Mazzà , C. (2015). Step detection and activity recognition accuracy of seven physical activity monitors, PLoS One, 10, e0118723, 2015. https://doi.org/10.1371/journal.pone.0118723

Sung, M.; Marci, C.; Pentland, A. (2005). Wearable feedback systems for rehabilitation, J. Neuroeng. Rehabil., 2, 17, 2005. https://doi.org/10.1186/1743-0003-2-17

Suto, J.; Oniga, S. and Sitar, P.P. (2017). Feature analysis to human activity recognition, Int. J. of Computers Communications & Control, 12(1), 116-130, 2017. https://doi.org/10.15837/ijccc.2017.1.2787

Wang, J.; Chen, R.; Sun, X.; She, M.; Wu, Y. (2011). Recognizing human daily activities from accelerometer signal, Procedia Eng., 15, 1780-1786, 2011. https://doi.org/10.1016/j.proeng.2011.08.331

Yang, J.Y.; Wang, J.S.; Chen, Y.P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers, Pattern Recognit. Lett., 29, 2213-2220, 2008. https://doi.org/10.1016/j.patrec.2008.08.002

Zhang, W.; Thurow, K. and Stoll, R.. (2016). A context-aware mhealth system for online physiological monitoring in remote healthcare. Int. J. Computers Communications & Control, 11(1), 142-156, 2016. https://doi.org/10.15837/ijccc.2016.1.1333

Zelun Zhang.; Poslad, S. (2014). Improved use of foot force sensors and mobile phone GPS for mobility activity recognition, IEEE Sens. J., 14, 4340-4347, 2014. https://doi.org/10.1109/JSEN.2014.2331463

Published

2020-02-02

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.