Solving a Modified Syndrome Decoding Problem using Integer Programming
Keywords:
Syndrome decoding, integer linear programming, simplex algorithmAbstract
In this article, we model a variant of the well-known syndrome decoding problem as a linear optimization problem. Most common algorithms used for solving optimization problems, e.g. the simplex algorithm, fail to find a valid solution for the syndrome decoding problem over a finite field. However, our simulations prove that a slightly modified version of the syndrome decoding problem can be solved by the simplex algorithm. More precisely, the algorithm returns a valid error vector when the syndrome vector is an integer vector, i.e.,the matrix-vector multiplication, is realized over Z, instead of Fq.
References
[2] Baldi, M.; Chiaraluce, F. (2007). Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In Proc. IEEE Int. Symposium Inf. Theory - ISIT, 2591-2595, Nice, France, June 2007. https://doi.org/10.1109/ISIT.2007.4557609
[3] Bardet, M.; Chaulet, J.; Dragoi, V.; Otmani, A.; Tillich, J.-P. (2016). Cryptanalysis of the McEliece public key cryptosystem based on polar codes. In Post-Quantum Cryptography 2016, Springer LNCS, 9606, 118-143, Fukuoka, Japan, Feb. 2016. https://doi.org/10.1007/978-3-319-29360-8_9
[4] Bardet, M.; Dragoi, V.; Luque, J.; Otmani, A.(2016). Weak keys for the quasi-cyclic MDPC public key encryption scheme. In Progress in Cryptology - AFRICACRYPT 2016 - 8th International Conference on Cryptology in Africa, Springer LNCS, 9646, 346-367, Fes, Morocco, April 13-15, 2016. https://doi.org/10.1007/978-3-319-31517-1_18
[5] Berger, T.P.; Loidreau, P.(2005). How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr., 35(1),63-79, 2005. https://doi.org/10.1007/s10623-003-6151-2
[6] Berlekamp, E.; McEliece, R.; van Tilborg, H.(1978). On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory, 24(3),384-386, May 1978. https://doi.org/10.1109/TIT.1978.1055873
[7] Bernstein, D.J. ; Lange, T.; Peters, C.(2010). Wild McEliece. In A. Biryukov, G. Gong, D. Stinson, editors, Selected Areas in Cryptography, Springer LNCS, 6544, 143-158, 2010. https://doi.org/10.1007/978-3-642-19574-7_10
[8] Bernstein, D.J. ; Lange, T.; Peters, C.(2011). Wild McEliece Incognito. In B.-Y. Yang, editor, Post-Quantum Cryptography 2011, Springer LNCS, 7071, 244-254. Springer Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-25405-5_16
[9] Borghoff, J.(2012). Mixed-integer linear programming in the analysis of trivium and ktantan. IACR Cryptology ePrint Archive, 2012. URL:https://eprint.iacr.org/2012/676.pdf
[10] Borghoff, J.; Knudsen, L.R.; Stolpe, M.(2009). Bivium as a mixed-integer linear programming problem. In Cryptography and Coding, Springer LNCS, 5921, 133-152. Springer Berlin Heidelberg, 2009. https://doi.org/10.1007/978-3-642-10868-6_9
[11] Chizhov, I.V.; Borodin, M.A.(2014). Effective attack on the McEliece cryptosystem based on Reed-Muller codes. Discrete Math. Appl., 24(5),273-280, 2014. https://doi.org/10.1515/dma-2014-0024
[12] Courtois, N.; Finiasz, M.; Sendrier, N.(2001). How to achieve a McEliece-based digital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, Springer LNCS 2248, 157-174, 2001. Springer. https://doi.org/10.1007/3-540-45682-1_10
[13] Couvreur, A.; Gaborit, P.; Gauthier-Umaña, V.; Otmani, A., Tillich, J.-P. (2014). Distinguisherbased attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr., 73 (2),641-666, 2014. https://doi.org/10.1007/s10623-014-9967-z
[14] Couvreur, A.; Márquez-Corbella, I.; Pellikaan, R.(2014). A polynomial time attack against algebraic geometry code based public key cryptosystems. In Proc. IEEE Int. Symposium Inf. Theory - ISIT 2014, 1446-1450, June 2014. https://doi.org/10.1109/ISIT.2014.6875072
[15] Couvreur, A.; Otmani, A.; Tillich, J.-P.(2013). New identities relating wild Goppa codes. Finite Fields Appl., 29,178-197, 2014. https://doi.org/10.1016/j.ffa.2014.04.007
[16] Couvreur, A.; Otmani, A.; Tillich, J.-P.(2014). Polynomial time attack on wild McEliece over quadratic extensions. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology - EUROCRYPT 2014, Springer LNCS, 8441, 17-39. Springer Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-642-55220-5_2
[17] Dragoi, V.; Talé Kalachi, H.(2018). Cryptanalysis of a public key encryption scheme based on QC-LDPC and QC-MDPC codes. IEEE Communications Letters, 22(2),264-267, Feb 2018. https://doi.org/10.1109/LCOMM.2017.2779449
[18] Dragoi, V.; Beiu, V.; Bucerzan, D.(2019). Vulnerabilities of the mceliece variants based on polar codes. In J.-L. Lanet and C. Toma, editors, Innovative Security Solutions for Information Technology and Communications, Springer LNCS,11359, 376-390, Cham, 2019. Springer International Publishing. https://doi.org/10.1007/978-3-030-12942-2_29
[19] Faugí¨re, J.-C. ; Otmani, A.; Perret, L.; de Portzamparc, F.; Tillich, J.-P. (2016). Folding alternant and Goppa Codes with non-trivial automorphism groups. IEEE Trans. Inform. Theory, 62(1), 184-198, 2016. https://doi.org/10.1109/TIT.2015.2493539
[20] Faure, C.; Minder, L.(2008). Cryptanalysis of the McEliece cryptosystem over hyperelliptic curves. In Proceedings of the eleventh International Workshop on Algebraic and Combinatorial Coding Theory, 99-107, Pamporovo, Bulgaria, June 2008.
[21] Ganian, R.; Ordyniak, S.(2019). Solving integer linear programs by exploiting variable-constraint interactions: A survey. Algorithms, 12(12),248, 2019. https://doi.org/10.3390/a12120248
[22] B.Gou (2008). Generalized integer linear programming formulation for optimal pmu placement. IEEE transactions on Power Systems, 23(3),1099-1104, 2008. https://doi.org/10.1109/TPWRS.2008.926475
[23] Gueye, C.T. ; Mboup, E.H.M. (2013). Secure cryptographic scheme based on modified Reed Muller codes. International Journal of Security and Its Applications, 7(3),55-64, 2013.
[24] Hooshmand, R.; Shooshtari, M.K. ; Eghlidos, T.; Aref, M.(2014). Reducing the key length of McEliece cryptosystem using polar codes. In 2014 11th International ISC Conference on Information Security and Cryptology (ISCISC), 104-108. IEEE, 2014. https://doi.org/10.1109/ISCISC.2014.6994031
[25] Janwa, H.; Moreno, O. (1996). McEliece public key cryptosystems using algebraic-geometric codes. Des. Codes Cryptogr., 8(3),293-307, 1996. https://doi.org/10.1007/BF00173300
[26] Johnson, E.L. ; Nemhauser, G.L. ; Savelsbergh, M.W.(2000) . Progress in linear programmingbased algorithms for integer programming: An exposition. Informs journal on computing, 12(1), 2-23, 2000. https://doi.org/10.1287/ijoc.12.1.2.11900
[27] Karp, R.M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations, 85-103. Springer, 1972. https://doi.org/10.1007/978-1-4684-2001-2_9
[28] Landais, G.; Tillich, J.-P. (2013). An efficient attack of a McEliece cryptosystem variant based on convolutional codes. In P. Gaborit, editor, Post-Quantum Cryptography'13, Springer LNCS, 7932, 102-117. Springer, June 2013. https://doi.org/10.1007/978-3-642-38616-9_7
[29] Lenstra Jr, H.W.(1983). Integer programming with a fixed number of variables. Mathematics of operations research, 8(4),538-548, 1983. https://doi.org/10.1287/moor.8.4.538
[30] Loidreau, P.; Sendrier, N.(2001). Weak keys in the McEliece public-key cryptosystem. IEEE Trans. Inform. Theory, 47(3),1207-1211, 2001. https://doi.org/10.1109/18.915687
[31] Lí¶ndahl, C.; Johansson, T.(2012). A new version of McEliece PKC based on convolutional codes. In Information and Communications Security, ICICS, Springer LNCS, 7168, 461-470. Springer, 2012. https://doi.org/10.1007/978-3-642-34129-8_45
[32] McEliece, R.J. (1987). A Public-Key System Based on Algebraic Coding Theory, pages 114-116. Jet Propulsion Lab, 1978. DSN Progress Report 44.
[33] Minder,L.; Shokrollahi,A.(2007). Cryptanalysis of the Sidelnikov cryptosystem. In Advances in Cryptology - EUROCRYPT 2007, Springer LNCS, 4515, 347-360, Barcelona, Spain, 2007. https://doi.org/10.1007/978-3-540-72540-4_20
[34] Misoczki, R.; Tillich, J.-P.;Sendrier, N.; Barreto, P.S. L.M.(2013). MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In Proc. IEEE Int. Symposium Inf. Theory - ISIT, 2069-2073, 2013. https://doi.org/10.1109/ISIT.2013.6620590
[35] Mizuno, S.(2016). The simplex method using tardos' basic algorithm is strongly polynomial for totally unimodular lp under nondegeneracy assumption. Optimization Methods and Software, 31 (6),1298-1304, 2016. https://doi.org/10.1080/10556788.2016.1208748
[36] Monico, C.; Rosentha, J.l; Shokrollahi, A.A.(2000). Using low density parity check codes in the McEliece cryptosystem. In Proc. IEEE Int. Symposium Inf. Theory - ISIT, 215, Sorrento, Italy, 2000. https://doi.org/10.1109/ISIT.2000.866513
[37] Moufek, H.; Guenda, K. Gulliver, T.A. (2017). A new variant of the mceliece cryptosystem based on qc-ldpc and qc-mdpc codes. IEEE Communications Letters, 21(4),714-717, April 2017. https://doi.org/10.1109/LCOMM.2016.2640271
[38] Mouha, N.; Wang, Q.; Gu, D.; Preneel, B.(2012). Differential and linear cryptanalysis using mixed-integer linear programming. In C.-K. Wu, M. Yung, and D. Lin, editors, Information Security and Cryptology, 57-76. Springer Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-34704-7_5
[39] Niederreiter, H.(1985). A public-key cryptosystem based on shift register sequences. In Advances in Cryptology - EUROCRYPT 1985, Springer LNCS, 219, 35-39, 1985. https://doi.org/10.1007/3-540-39805-8_4
[40] Otmani, A.; Kalachi, H.T.(2015). Square code attack on a modified sidelnikov cryptosystem. In Codes, Cryptology, and Information Security, 173-183. Springer, 2015. https://doi.org/10.1007/978-3-319-18681-8_14
[41] Otmani, A.; Tillich, J.-P. ; Dallot, L.(2008). Cryptanalysis of McEliece cryptosystem based on quasi-cyclic LDPC codes. In Proceedings of First International Conference on Symbolic Computation and Cryptography, 69-81, Beijing, China, Apr. 28-30 2008. LMIB Beihang University.
[42] Persichetti, E.(2012). Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol., 6(2),149-169, 2012. https://doi.org/10.1515/jmc-2011-0099
Additional Files
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.