AN Improving NCS Stabilization Using a Predictive Pulsed Control Law

Authors

  • Oriol Castillo
  • Héctor Bení­tez-Pérez UNAM

Keywords:

networked control systems, digital control, Bayesian prediction

Abstract

The aim in this paper is experimentally to show that a predictive pulsed control law is able to enlarge the stabilizing sampling periods of a networked control system (NCS) more than the classical predictive ZOH-control law. Additionally, using a comparisson in the system response between the predictive pulsed control law and the predictive ZOH-control law, it is obtained that the pulsed control law requires less energy consumption to stabilize a NCS exposed to large time-delays. A 3-DOF Hover is used as case study.

References

[1] Beldiman, O.; Walsh, G. C. Bushnell, L. (2000). Predictors for networked control systems. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), v4, 2347-2351, 2000. https://doi.org/10.1109/ACC.2000.878600

[2] Briat, C. (2014). Spectral necessary and sufficient conditions for sampling-period-independent stabilisation of periodic and aperiodic sampled-data systems using a class of generalised sampleddata hold functions. International Journal of Control, 87(3), 612-621, 2014. https://doi.org/10.1080/00207179.2013.852249

[3] Castillo, O.; Bení­tez-Pérez, H. (2017). A novel technique to enlarge the maximum allowable delay bound in sampled-data systems. In Congreso Nacional de Control Automático 2017, Monterrey, Nuevo León, México. Asociación Mexicana de Control Automático, 2017.

[4] Castillo, O.; Bení­tez-Pérez, H.; Alvarez-Icaza, L. (2020). Novel analysis of sampled-data systems stabilised by a pulsed control signal. International Journal of Control, 0(0):1-9. https://doi.org/10.1080/00207179.2020.1735651

[5] Fridman, E. (2010). A refined input delay approach to sampled-data control. Automatica, 46(2):421-427. https://doi.org/10.1016/j.automatica.2009.11.017

[6] Fridman, E. (2014). Introduction to time-delay systems: Analysis and control. Springer. https://doi.org/10.1007/978-3-319-09393-2

[7] Halevi, Y.; Ray, A. (1988). Integrated communication and control systems: Part i-analysis. https://doi.org/10.1115/1.3152698

[8] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35-45. https://doi.org/10.1115/1.3662552

[9] Li, H.; Sun, Z.; Liu, H.; Chow, M.-Y. (2008). Predictive observer-based control for networked control systems with network-induced delay and packet dropout. Asian journal of control, 10(6):638- 650. https://doi.org/10.1002/asjc.65

[10] Li, X.-G.; Cela, A.; Niculescu, S.-I.; Reama, A. (2009a). A switched control method for networked control systems. IFAC Proceedings Volumes, 42(14):61-65. https://doi.org/10.3182/20090901-3-RO-4009.00007

[11] Li, X.-G.; Niculescu, S.-I.; Reama, A., et al. (2009b). Stability analysis of networked control systems based on a switched control. IFAC Proceedings Volumes, 42(20):358-363. https://doi.org/10.3182/20090924-3-IT-4005.00061

[12] Liu, B.; Xia, Y.; Mahmoud, M. S.; Wu, H.; Cui, S. (2012). New predictive control scheme for networked control systems. Circuits, Systems, and Signal Processing, 31(3):945-960. https://doi.org/10.1007/s00034-011-9359-9

[13] Naghshtabrizi, P.; Hespanha, J. P.; Teel, A. R. (2008). Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters, 57(5):378-385. https://doi.org/10.1016/j.sysconle.2007.10.009

[14] Naghshtabrizi, P.; Hespanha, J. P.; Teel, A. R. (2010). Stability of delay impulsive systems with application to networked control systems. Transactions of the Institute of Measurement and Control, 32(5):511-528. https://doi.org/10.1177/0142331208097841

[15] Seuret, A. (2012). A novel stability analysis of linear systems under asynchronous samplings. Automatica, 48(1):177-182. https://doi.org/10.1016/j.automatica.2011.09.033

[16] Su, J.; Li, B.; Chen, W.-H. (2015). On existence, optimality and asymptotic stability of the kalman filter with partially observed inputs. Automatica, 53, 149-154, 2015. https://doi.org/10.1016/j.automatica.2014.12.044

[17] Sun, X.-M.; Liu, G.-P.; Rees, D.; Wang, W. (2008). A novel method of stability analysis for networked control systems. IFAC Proceedings Volumes, 41(2), 4852-4856, 2008. https://doi.org/10.3182/20080706-5-KR-1001.00815

[18] Sí¤rkkí¤, S. (2013). Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2013.

[19] Zheng, Y.; Fang, H.; Wang, Y. (2004). Kalman filter based fdi of networked control system. In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788), IEEE, 2, 1330-1333, 2004. https://doi.org/10.1109/WCICA.2004.1340856

Additional Files

Published

2020-11-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.