A Novel Self-organizing Fuzzy Cerebellar Model Articulation Controller Based Overlapping Gaussian Membership Function for Controlling Robotic System

Authors

  • Thanh-Quyen Ngo Industrial of University Ho Chi Minh City, Vietnam
  • Dinh-Khoi Hoang Industrial of University Ho Chi Minh City, Vietnam
  • Trong-Toan Tran Industrial of University Ho Chi Minh City, Vietnam
  • Thanh-Thuan Nguyen Industrial of University Ho Chi Minh City, Vietnam
  • Van-Tho Nguyen Industrial of University Ho Chi Minh City, Vietnam
  • Long-Ho Le Industrial of University Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15837/ijccc.2022.4.4606

Abstract

This paper introduces an effective intelligent controller for robotic systems with uncertainties. The proposed method is a novel self-organizing fuzzy cerebellar model articulation controller (NSOFC) which is a combination of a cerebellar model articulation controller (CMAC) and sliding mode control (SMC). We also present a new Gaussian membership function (GMF) that is designed by the combination of the prior and current GMF for each layer of CMAC. In addition, the relevant data of the prior GMF is used to check tracking errors more accurately. The inputs of the proposed controller can be mixed simultaneously between the prior and current states according to the corresponding errors. Moreover, the controller uses a self-organizing approach which can increase or decrease the number of layers, therefore the structures of NSOFC can be adjusted automatically. The proposed method consists of a NSOFC controller and a compensation controller. The NSOFC controller is used to estimate the ideal controller, and the compensation controller is used to eliminate the approximated error. The online parameters tuning law of NSOFC is designed based on Lyapunov’s theory to ensure stability of the system. Finally, the experimental results of a 2 DOF robot arm are used to demonstrate the efficiency of the proposed controller.

References

A. Y. R. Ruiz and B. Chandrasekaran (2020). A Robotic Control System Using Robot Operating System and MATLAB for Sensor Fusion and Human-Robot Interaction, 10th Annual Computing and Communication Workshop and Conference (CCWC), 0550-0555, 2020.

https://doi.org/10.1109/CCWC47524.2020.9031184

M. Stanese, M. Susca, V. Mihaly and I. Nascu (2020). Design and Control of a Self-Balancing Robot, IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1-6, 2020.

https://doi.org/10.1109/AQTR49680.2020.9129935

J. Jiang, A. McCoy, E. Lee and L. Tan (2017). Development of a motion controlled robotic arm, IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 101-105, 2017.

https://doi.org/10.1109/UEMCON.2017.8248998

N. Kandalaft, P. S. Kalidindi, S. Narra and H. N. Saha (2018). Robotic arm using voice and Gesture recognition, IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 1060-1064, 2018.

https://doi.org/10.1109/IEMCON.2018.8615055

J.-H. Park, P. Stegall, and S. K. Agrawal (2015). Dynamic brace for correction of abnormal postures of the human spine, in Proceedings 2015 IEEE International Conference on Robotics and Automation (ICRA), 5922-5927, 2015.

G. Peng, C. Yang, W. He et al (2019). Force sensorless admittance control with neural learning for robots with actuator saturation, IEEE Transactions on Industrial Electronics, vol. 67, no. 4, 3138-3148, 2019.

https://doi.org/10.1109/TIE.2019.2912781

L. Hao; R. Pagani; M. Beschi; G. Legnani (2021). Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis, Robotics, 10-49, 2021.

https://doi.org/10.3390/robotics10010049

K. Harada et al. (2005). A Humanoid Robot Carrying a Heavy Object, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 1712-1717, 2005.

R. Kumar, S. Lal, S. Kumar and P. Chand (2014). Object detection and recognition for a pick and place Robot, Asia-Pacific World Congress on Computer Science and Engineering, 1-7, 2014.

https://doi.org/10.1109/APWCCSE.2014.7053853

N. Neumann, S. Meyer zu Borgsen, P. Lücking and S.Wachsmuth (2018). An automated pick-andplace benchmarking system in robotics, IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 243-249, 2018.

https://doi.org/10.1109/ICARSC.2018.8374190

M. N. Duc and T. N. Trong (2014). Neural network structures for identification of nonlinear dynamic robotic manipulator, IEEE International Conference on Mechatronics and Automation, 1575-1580, 2014.

https://doi.org/10.1109/ICMA.2014.6885935

N. Golea, A. Golea, and K. Benmahammed (2002). Fuzzy model reference adaptive control, IEEE Transactions on Fuzzy Systems, vol. 10, 436-444, 2002.

https://doi.org/10.1109/TFUZZ.2002.800694

J. H. Park, S. J. Seo, and G. T. Park (2003). Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors, Fuzzy Sets and Systems, vol. 133, 19-36, 2003.

https://doi.org/10.1016/S0165-0114(02)00137-9

C.J.B.Macnab (2016). Using RBFs in a CMAC to prevent parameter drift in adaptive control, Neurocomputing, vol. 205, 45-52, 2016.

https://doi.org/10.1016/j.neucom.2016.04.022

NGO, Thanh Quyen et al. (2014). Robust Adaptive Neural-Fuzzy Network Tracking Control for Robot Manipulator, International Journal of Computers Communications & Control, vol. 7, no. 2, 341-352, 2014.

https://doi.org/10.15837/ijccc.2012.2.1414

J. S. Albus (1975). A new approach to manipulator control: The cerebellar model articulation controller (CMAC), Journal of Dynamic Systems, Measurement, and Control, vol. 97, no. 3, 220-227, 1975.

https://doi.org/10.1115/1.3426922

H. Shiraishi, S. L. Ipri, and D. D. Cho (1995). CMAC neural network controller for fuel-injection systems, IEEE Trans. Control Syst. Technol., vol. 3, no. 1, 32-38, 1995.

https://doi.org/10.1109/87.370707

S. Jagannathan, S. Commuri, and F. L. Lewis (1998). Feedback linearization using CMAC neural networks, Automatica, vol. 34, no. 3, 547-557, 1998.

https://doi.org/10.1016/S0005-1098(97)00206-9

Y. H. Kim and F. L. Lewis (2000). Optimal design of CMAC neural-network controller for robot manipulators, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 30, no. 1, 22-31, 2000.

https://doi.org/10.1109/5326.827451

C. Lin and T. Chen (2009). Self-Organizing CMAC Control for a Class of MIMO Uncertain Nonlinear Systems, IEEE Transactions on Neural Networks, vol. 20, no. 9, 1377-1384, 2009.

https://doi.org/10.1109/TNN.2009.2013852

Chih-Min Lin, and Hsin-Yi Li (2012). A Novel Adaptive Wavelet Fuzzy Cerebellar Model Articulation Control System Design for Voice Coil Motors, IEEE Trans. Ind. Electron., vol. 59, no. 4, 2024-2033, 2012.

https://doi.org/10.1109/TIE.2011.2160139

H. C. Lu, C. Y. Chuang (2011). Robust parametric CMAC with self-generating design for uncertain nonlinear systems, Neurocomputing, vol. 74, no. 4, 549-562, 2011.

https://doi.org/10.1016/j.neucom.2010.09.001

J. Zhang et al. (2020). A Novel Self-Organizing Emotional CMAC Network for Robotic Control, International Joint Conference on Neural Networks (IJCNN), 1-6, 2020.

https://doi.org/10.1109/IJCNN48605.2020.9207710

Lee HM, Chen CM, Lu YF (2003). A self-organizing HCMAC neural-network classifier, IEEE Trans Neural Netw., 14(1):15-27. PMID: 18237986, 2003.

https://doi.org/10.1109/TNN.2002.806607

C. Min, L. Y. Chen, C. H. Chen (2007). RCMAC Hybrid Control for MIMO Uncertain Nonlinear Systems Using Sliding-Mode Technology, IEEE Trans. Neural Netw., vol. 18, no. 3, 708-720, 2007.

https://doi.org/10.1109/TNN.2007.891198

T. T. Huynh, T. L. Le, and C. M. Lin (2018). A TOPSIS multi-criteria decision method-based intelligent recurrent wavelet CMAC control system design for MIMO uncertain nonlinear systems, Neural Computing and Applications, 2018.

https://doi.org/10.1007/s00521-018-3795-4

F. O. Rodriguez, W. Yu, and M. A. Moreno-Armendariz (2008). Nonlinear systems identification via two types of recurrent fuzzy CMAC, Neural Processing Letters, vol. 28, 49-62, 2008.

https://doi.org/10.1007/s11063-008-9081-1

T. Bäck and H. Schwefel (1993). An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, vol. 1, no. 1, 1-23, 1993.

https://doi.org/10.1162/evco.1993.1.1.1

S. Park and J. Lee (2016). Stochastic Opposition-Based Learning Using a Beta Distribution in Differential Evolution, IEEE Transactions on Cybernetics, vol. 46, no. 10, 2184-2194, 2016.

https://doi.org/10.1109/TCYB.2015.2469722

Elsisi, Mahmoud. (2019). Future search algorithm for optimization, Evolutionary Intelligence, 12. 10.1007/s12065-018-0172-2.

https://doi.org/10.1007/s12065-018-0172-2

Hussain Shareef, Ahmad Asrul Ibrahim, Ammar Hussein Mutlag (2015). Lightning search algorithm, Applied Soft Computing, vol. 36, 315-333, 2015, ISSN 1568-4946.

https://doi.org/10.1016/j.asoc.2015.07.028

Elsisi, Mahmoud & Abdelfattah, Hany. (2019). New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation, Nuclear Engineering and Technology, vol. 52, 2019.

https://doi.org/10.1016/j.net.2019.08.003

Elsisi, Mahmoud (2020). Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm, International Journal of Intelligent Systems, 2020, 35. 10.1002/int.22275.

https://doi.org/10.1002/int.22275

Elsisi, M., & Ebrahim, M. A. (2021). Optimal design of low computational burden model predictive control based on SSDA towards autonomous vehicle under vision dynamics, International Journal of Intelligent Systems, 2021, 36(11), 6968-6987. Portico.

https://doi.org/10.1002/int.22576

Additional Files

Published

2022-07-20

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.