Healthcare Monitoring using Machine Learning Based Data Analytics

Authors

  • S.R. Janani SNS College of Technology, Coimbatore, India
  • R. Subramanian SNS College of Technology, Coimbatore, India
  • S. Karthik SNS College of Technology, Coimbatore, India
  • C. Vimalarani Karpagam Institute of Technology, Coimbatore, India

DOI:

https://doi.org/10.15837/ijccc.2023.1.4973

Abstract

In this paper, we develop a machine learning based healthcare monitoring and analytics from various Internet of Medical Things (IoMT) devices for possible prediction of cardiovascular risk in patients. The study uses random forest for feature selection and then the fuzzy logic classifier is used for prediction of Cardio Vascular Disease (CVD). The simulation is conducted to test the efficacy of the proposed machine learning based data analytics model over various other methods. The results show than the proposed method has higher rate of classification accuracy in classifying the CVD with higher recall and F1-score than other methods.

References

Souri, A., Ghafour, M. Y., Ahmed, A. M., Safara, F., Yamini, A., & Hoseyninezhad, M. (2020). A new machine learning-based healthcare monitoring model for student's condition diagnosis in Internet of Things environment. Soft Computing, 24, 17111-17121.

https://doi.org/10.1007/s00500-020-05003-6

Gondalia, A., Dixit, D., Parashar, S., Raghava, V., Sengupta, A., & Sarobin, V. R. (2018). IoT-based healthcare monitoring system for war soldiers using machine learning. Procedia computer science, 133, 1005-1013.

https://doi.org/10.1016/j.procs.2018.07.075

Woods, M., & Miklencicova, R. (2021). Digital Epidemiological Surveillance, Smart Telemedicine Diagnosis Systems, and Machine Learning-based Real-Time Data Sensing and Processing in COVID-19 Remote Patient Monitoring. American Journal of Medical Research, 8, 65-78.

https://doi.org/10.22381/ajmr8220215

Ramkumar, P. N., Haeberle, H. S., Ramanathan, D., Cantrell, W. A., Navarro, S. M., Mont, M. A., & Patterson, B. M. (2019). Remote patient monitoring using mobile health for total knee arthroplasty: validation of a wearable and machine learning-based surveillance platform. The Journal of arthroplasty, 34, 2253-2259.

https://doi.org/10.1016/j.arth.2019.05.021

Rghioui, A., Lloret, J., Sendra, S., & Oumnad, A. (2020, September). A smart architecture for diabetic patient monitoring using machine learning algorithms. In Healthcare (Vol. 8, No. 3, p. 348). MDPI.

https://doi.org/10.3390/healthcare8030348

Anuar, H., & Leow, P. L. (2019, July). Non-invasive core body temperature sensor for continuous monitoring. In 2019 IEEE International Conference on Sensors and Nanotechnology (pp. 1-4). IEEE.

https://doi.org/10.1109/SENSORSNANO44414.2019.8940040

Huang, P. W., Chang, T. H., Lee, M. J., Lin, T. M., Chung, M. L., & Wu, B. F. (2016, November). An embedded non-contact body temperature measurement system with automatic face tracking and neural network regression. In 2016 International Automatic Control Conference (CACS) (pp. 161-166). IEEE.

https://doi.org/10.1109/CACS.2016.7973902

Huang, M., Tamura, T., Tang, Z., Chen, W., & Kanaya, S. (2016). A wearable thermometry for core body temperature measurement and its experimental verification. IEEE journal of biomedical and health informatics, 21, 708-714.

https://doi.org/10.1109/JBHI.2016.2532933

Rahaman, A., Islam, M. M., Islam, M. R., Sadi, M. S., & Nooruddin, S. (2019). Developing IoT Based Smart Health Monitoring Systems: A Review. Rev. d'Intelligence Artif., 33, 435-440.

https://doi.org/10.18280/ria.330605

Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A. A., & Alsalem, M. A. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. Journal of Network and Computer Applications, 173, 102873.

https://doi.org/10.1016/j.jnca.2020.102873

Paganelli, A. I., Velmovitsky, P. E., Miranda, P., Branco, A., Alencar, P., Cowan, D., & Morita, P. P. (2022). A conceptual IoT-based early-warning architecture for remote monitoring of COVID-19 patients in wards and at home. Internet of Things, 18, 100399.

https://doi.org/10.1016/j.iot.2021.100399

D. N. V. S. L. S. Indira, Rajendra Kumar Ganiya, P. Ashok Babu, A. Jasmine Xavier, L. Kavisankar, S. Hemalatha, V. Senthilkumar, T. Kavitha, A. Rajaram, Karthik Annam, Alazar Yeshitla, "Improved Artificial Neural Network with State Order Dataset Estimation for Brain Cancer Cell Diagnosis", BioMed Research International, vol. 2022, Article ID 7799812, 10 pages, 2022. https://doi.org/10.1155/2022/7799812.

https://doi.org/10.1155/2022/7799812

Al Bassam, N., Hussain, S. A., Al Qaraghuli, A., Khan, J., Sumesh, E. P., & Lavanya, V. (2021). IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Informatics in medicine unlocked, 24, 100588.

https://doi.org/10.1016/j.imu.2021.100588

Kadhim, K. T., Alsahlany, A. M., Wadi, S. M., & Kadhum, H. T. (2020). An overview of patient's health status monitoring system based on Internet of Things (IoT). Wireless Personal Communications, 114, 2235-2262.

https://doi.org/10.1007/s11277-020-07474-0

Bhatia, M., Kaur, S., & Sood, S. K. (2020). IoT-inspired smart home based urine infection prediction. Journal of Ambient Intelligence and Humanized Computing, 1-15.

https://doi.org/10.1007/s12652-020-01952-w

Li, W., Chai, Y., Khan, F., Jan, S. R. U., Verma, S., Menon, V. G., & Li, X. (2021). A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mobile Networks and Applications, 26, 234-252.

https://doi.org/10.1007/s11036-020-01700-6

Kondaka, L. S., Thenmozhi, M., Vijayakumar, K., & Kohli, R. (2021). An intensive healthcare monitoring paradigm by using IoT based machine learning strategies. Multimedia Tools and Applications, 1-15.

https://doi.org/10.1007/s11042-021-11111-8

Karthik, A., MazherIqbal, J.L. Efficient Speech Enhancement Using Recurrent Convolution Encoder and Decoder. Wireless Pers Commun 119, 1959-1973 (2021). https://doi.org/10.1007/s11277-021-08313-6.

https://doi.org/10.1007/s11277-021-08313-6

Onasanya, A., & Elshakankiri, M. (2021). Smart integrated IoT healthcare system for cancer care. Wireless Networks, 27, 4297-4312.

https://doi.org/10.1007/s11276-018-01932-1

Uslu, B. Ç., Okay, E., & Dursun, E. (2020). Analysis of factors affecting IoT-based smart hospital design. Journal of Cloud Computing, 9, 1-23.

https://doi.org/10.1186/s13677-020-00215-5

Wan, J., AAH Al-awlaqi, M., Li, M., O'Grady, M., Gu, X., Wang, J., & Cao, N. (2018). Wearable IoT enabled real-time health monitoring system. EURASIP Journal on Wireless Communications and Networking, 2018, 1-10.

https://doi.org/10.1186/s13638-018-1308-x

Additional Files

Published

2023-02-09

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.