Research on the Interaction between Information and Behavior Based on Small Group Effect on Multilayer Social Networks
DOI:
https://doi.org/10.15837/ijccc.2023.5.5074Abstract
In the era of big data, massive amounts of information play an important role in individual behavior and decision-making. In order to investigate the interaction mechanism between information and individual behavior, we consider the influence of the "small group" network structure in social networks, and construct an information-behavior coupled dynamics propagation model (UAL-NBN) based on small group effect. Then we carry out theoretical analysis and derive the dynamic evolution equations for the model used the Micro Markov Chain Approach (MMCA). And we verify the correctness of the theoretical analysis by performing Monte Carlo simulations (MC). The results show that the small group effect does promote the spread of information and behavior in the population, which is reflected in reducing the epidemic threshold and increasing the outbreak size. In addition, we also conclude that the more small group structures exist in social networks, the more significant the promotion effect of the small group effect is. Finally, we describe the specific application of the model in scenarios such as epidemic control, rumor governance, social behavior advocacy, and consumer marketing, and provide theoretical reference and suggestions for the government and other relevant departments to formulate policies which promote the spread of behavior in society through information dissemination.References
Suo, Q.; Guo, J.L.; Shen, A.Z. (2018). Information spreading dynamics in hypernetworks, Physica A: Statistical Mechanics and its Applications, 495, 475-487, 2018.
https://doi.org/10.1016/j.physa.2017.12.108
[Online]. Available: https://datareportal.com/reports/digital-2022-april-global-statshot, Accesed on 21 April 2022.
Althoff, T.; Jindal, P.; Leskovec, J. (2017). Online actions with offline impact: How online social networks influence online and offline user behavior, In Proceedings of the tenth ACM international conference on web search and data mining, 537-546, 2017.
https://doi.org/10.1145/3018661.3018672
Dumitru, I; Gârdan, Da; Pas, tiu, Ca; Muntean, Ac; Gârdan, Ip (2021). On the Mechanism of the Label Perception: How Does Labeling Change Food Products Customer Behavior?, Economic Computation And Economic Cybernetics Studies And Research, 55, 193-210, 2021.
https://doi.org/10.24818/18423264/55.2.21.12
Alyouzbaky, B.A.; Hanna, R.D.; Najeeb, S.H. (2022). The Effect of Information Overload, and Social Media Fatigue on Online Consumers Purchasing Decisions: The Mediating Role of Technos- tress and Information Anxiety, Journal of Logistics, Informatics and Service Science, 12, 195-220, 2022.
Zhang, Y.B.; Zhang, L.L.; Kim, H.K. (2021). The effect of UTAUT2 on use intention and use behavior in online learning platform, Journal of Logistics, Informatics and Service Science, 8, 67-81, 2021.
Mutahar, Y.; Farea, M.M., Abdulrab, M.; Al-Mamary, Y.H.; Alfalah, A.A.; Grada, M.; Alsham- mari, .H. (2021). How to nhance he Impact of Perceived Organizational upport on Knowledge Sharing? Evidence from Higher Education Sector, Journal of System and Management Sciences, 11, 27-46, 2021.
Wiliam, A.; Arief, M.; Bandur, A.; Tjhin, V.U. (2022). Are Farmers Ready to Switch Using Precision Agriculture, Journal of System and Management Sciences, 12, 347-364, 2022.
Newman, M.E.; Ferrario, C.R. (2013). Interacting epidemics and coinfection on contact networks, PloS one, 8(8), e71321, 2013.
https://doi.org/10.1371/journal.pone.0071321
Wang, W.; Tang, M.; Yang, H.; Do, Y.; Lai, Y.C.; Lee, G. (2014). Asymmetrically interacting spreading dynamics on complex layered networks, Scientific reports, 4(1), 1-8, 2014.
https://doi.org/10.1038/srep05097
Li, W.; Tian, L.; Gao, X.; Pan, B. (2019). Impacts of information diffusion on green behavior spreading in multiplex networks, Journal of Cleaner Production, 222, 488-498, 2019.
https://doi.org/10.1016/j.jclepro.2019.03.067
Li, W.; Tian, L.; Batool, H. (2018). Impact of negative information diffusion on green behavior adoption, Resources, Conservation and Recycling, 136, 337-344, 2018.
https://doi.org/10.1016/j.resconrec.2018.04.026
Yu, Q.; Yu, Z.; Ma, D. (2020). A multiplex network perspective of innovation diffusion: An information-behavior framework, IEEE Access, 8, 36427-36440, 2020.
https://doi.org/10.1109/ACCESS.2020.2975357
Sayarshad, H.R. (2022). An optimal control policy in fighting Covid-19 and infectious diseases, Applied Soft Computing, 126, 109289, 2022.
https://doi.org/10.1016/j.asoc.2022.109289
Granell, C.; Gómez, S.; Arenas, A. (2013). Dynamical interplay between awareness and epidemic spreading in multiplex etworks, Physical review letters, 11(12), 128701, 2013.
https://doi.org/10.1103/PhysRevLett.111.128701
Granell, C.; Gómez, S.; Arenas, A. (2014). Competing spreading processes on multiplex networks: awareness and epidemics, Physical review E, 90(1), 012808, 2014.
https://doi.org/10.1103/PhysRevE.90.012808
Ye, Y.; Zhang, Q.; Ruan, Z.; Cao, Z.; Xuan, Q.; Zeng, D. D. (2020). Effect of heterogeneous risk perception on information diffusion, behavior change, and disease transmission, Physical Review E, 102(4), 042314, 2020.
https://doi.org/10.1103/PhysRevE.102.042314
Funk, S.; Gilad, E.; Jansen, V. A. (2010). Endemic disease, awareness, and local behavioural response, Journal of theoretical biology, 264(2), 501-509, 2010.
https://doi.org/10.1016/j.jtbi.2010.02.032
Saha, S.; Samanta, G.P.; Nieto, J.J. (2020). Epidemic model of COVID-19 outbreak by inducing behavioural response in population, Nonlinear dynamics, 102(1), 455-487, 2020.
https://doi.org/10.1007/s11071-020-05896-w
Zhao, D.; Wang, L.; Xu, L.; Wang, Z. (2015). Finding another yourself in multiplex networks, Applied Mathematics and Computation, 266, 599-604, 2015.
https://doi.org/10.1016/j.amc.2015.05.099
Fan, C.J.; Jin, Y.; Huo, L.A.; Liu, C.; Yang, Y.P.; Wang, Y.Q. (2016). Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks, Physica A: Statistical Mechanics and its Applications, 461, 523-530, 2016.
https://doi.org/10.1016/j.physa.2016.06.050
Zuo, C.; Zhu, F.; Ling, Y. (2022). Analyzing COVID-19 Vaccination Behavior Using an SEIRM/V Epidemic Model With Awareness Decay, Frontiers in Public Health, 10, 202
https://doi.org/10.3389/fpubh.2022.817749
Zeng, Q.; Liu, Y.; Tang, M.; Gong, J. (2021). Identifying super-spreaders in information-epidemic coevolving dynamics on multiplex networks, Knowledge-Based Systems, 229, 107365, 2021.
https://doi.org/10.1016/j.knosys.2021.107365
Liu, Q.H.; Wang, W.; Tang, M.; Zhang, H.F. (2016). Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks, Scientific reports, (1), 1-13, 2016.
https://doi.org/10.1038/srep25617
Zhang, H.F.; Xie, J.R.; Tang, M.; Lai, Y.C. (2014). Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(4), 043106, 2014.
https://doi.org/10.1063/1.4896333
Bi, K.; Chen, Y.; Zhao, S.; Ben-Arieh, D.; Wu, C.H.J. (2019). Modeling learning and forgetting processes with the corresponding impacts on human behaviors n infectious disease epidemics, Computers & Industrial Engineering, 129, 563-577, 2019.
https://doi.org/10.1016/j.cie.2018.04.035
Kan, J.Q.; Zhang, H.F. (2019). Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading-an approach based on multiplex networks, Communications in Nonlinear Science and Numerical Simulation, 44, 193-203, 2019.
https://doi.org/10.1016/j.cnsns.2016.08.007
Weitz, J.S.; Park, S.W.; Eksin, C.; Dushoff, J. (2020). Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proceedings of the National Academy of Sciences, 117(51), 32764-32771, 2020.
https://doi.org/10.1073/pnas.2009911117
Romualdo Pastor-Satorras; Claudio Castellano; Piet Van Mieghem; Alessandro Vespignani (2015). Epidemic processes in complex networks, Reviews of Modern Physics, 7, 925-979, 2015.
https://doi.org/10.1103/RevModPhys.87.925
Balcan, D.; Vespignani, A. (2011). Phase transitions in contagion processes mediated by recurrent mobility patterns, Nature Phys, 7, 581-586, 2011.
https://doi.org/10.1038/nphys1944
Colizza V; Barrat A; Barthélemy M; Vespignani A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics, Proceedings of the National Academy of Sciences, 103, 2015-2020, 2006.
https://doi.org/10.1073/pnas.0510525103
Xia, C.; Wang, Z.; Zheng, C.; Guo, Q.; Shi, Y.; Dehmer, M.; Chen, Z. (2019). A new coupled disease-awareness spreading odel with mass media on ultiplex networks, Information Sciences, 471, 185-200, 2019.
https://doi.org/10.1016/j.ins.2018.08.050
Wang, Z.; Xia, C.; Chen, Z.; Chen, G. (2021). Epidemic Propagation With Positive and Negative Preventive Information in Multiplex Networks, IEEE Transactions on Cybernetics, 51, 1454-1462, 2021.
https://doi.org/10.1109/TCYB.2019.2960605
Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. (2006). Complex networks: Struc- ture and dynamics, Physics Reports, 424, 175-308, 2006.
https://doi.org/10.1016/j.physrep.2005.10.009
Li, Y.; Zou, X. (2016). Identifying disease modules and components of viral infections based on multi-layer networks, Science China Information Sciences, 59, 070102, 2016.
https://doi.org/10.1007/s11432-016-5580-2
Pastor-Satorras R; Vespignani A. (2001). Epidemic Spreading in Scale-Free Networks, Phys Rev Lett, 86, 3200-3203, 2001.
https://doi.org/10.1103/PhysRevLett.86.3200
Li, W.; Ni, L.; Zhang, Y.; Su, S.; Peng, B.; Wang, W. (2022). Immunization strategies for simplicial irreversible epidemic on simplicial complex, Frontiers in Physics, 10, 2022.
https://doi.org/10.3389/fphy.2022.1018844
Yin, Q.; Wang, Z.; Xia, C.; Dehmer, M.; Emmert-Streib, F.; Jin, Z. (2020). A novel epidemic model considering demographics and intercity commuting on complex dynamical networks, Ap- plied Mathematics and Computation, 386, 125517, 2020.
https://doi.org/10.1016/j.amc.2020.125517
Levnajić, Z.; Pikovsky, A. (2011). Network reconstruction from random phase resetting, Physical review letters, 107(3), 034101, 2011
https://doi.org/10.1103/PhysRevLett.107.034101
Wu, J.; Yang, H.; Ren, Y.; Li, X.R. (2018). A two-stage algorithm for network reconstruction, Applied Soft Computing, 70, 751-763, 2018.
https://doi.org/10.1016/j.asoc.2018.06.007
Zhou, J.; Liu, H. (2022). Modeling the Impact of Virtual Contact Network with Community Structure on the Epidemic Spreading, Complexity, 2022, 2022.
https://doi.org/10.1155/2022/9551912
Chang, X.; Cai, C.R.; Zhang, J.Q.; Wang, C.Y. (2021). Analytical solution of epidemic threshold for coupled information-epidemic dynamics on multiplex networks with alterable heterogeneity, Physical Review E, 104(4), 044303, 2021.
https://doi.org/10.1103/PhysRevE.104.044303
Guo, H.; Yin, Q.; Xia, C.; Dehmer, M. (2021). Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks, Nonlinear Dynamics, 105(4), 3819-3833, 2021.
https://doi.org/10.1007/s11071-021-06784-7
Li, M.; Wang, M.; Xue, S.; Ma, J. (2020). The influence of awareness on epidemic spreading on random etworks, Journal of Theoretical Biology, 486, 10090, 020.
https://doi.org/10.1016/j.jtbi.2019.110090
Kabir, K.A.; Tanimoto, J. (2019). Analysis of epidemic outbreaks in two-layer networks with different structures for information spreading and disease diffusion, Communications in Nonlinear Science and Numerical Simulation, 72, 565-574, 2019.
https://doi.org/10.1016/j.cnsns.2019.01.020
Ariful Kabir, K.M.; Tanimotoc, J. (2019). Impact of awareness in metapopulation epidemic model to suppress the infected individuals for different graphs, The European Physical Journal B, 92(9), 1-16, 2019.
https://doi.org/10.1140/epjb/e2019-90570-7
Zheng, M.; Lü, L.; Zhao, M. (2013). Spreading in online social networks: The role of social reinforcement, Physical Review E, 88(1), 012818, 2013.
https://doi.org/10.1103/PhysRevE.88.012818
Sherchan, W.; Nepal, S.; Paris, C. (2013). A survey of trust in social networks, ACM Computing Surveys (CSUR), 45(4), 1-33, 2013.
https://doi.org/10.1145/2501654.2501661
Wu, H.; Arenas, A.; Gómez, S. (2017). Influence of trust in the spreading of information, Physical Review E, 95(1), 012301, 2017.
https://doi.org/10.1103/PhysRevE.95.012301
Chowdhury, W.; Burt, C.; Akkaoui, A.; Davies, J. (2015). Quanty: An online game for eliciting the wisdom of the crowd, Computers in Human Behavior, 49, 213-219, 2015.
https://doi.org/10.1016/j.chb.2015.03.004
Duo, Q.; Shen, H.; Zhao, J.; Gong, X. (2016). Conformity behavior during a fire disaster, Social Behavior and Personality: an international journal, 44(2), 313-324, 2016.
https://doi.org/10.2224/sbp.2016.44.2.313
Yan, X.; Jiang, P. (2018). Effect of the dynamics of human behavior on the competitive spreading of information, Computers in Human Behavior, 89, 1-7, 2018.
https://doi.org/10.1016/j.chb.2018.07.014
Guo, Q.; Jiang, X.; Lei, Y.; Li, M.; Ma, Y.; Zheng, Z. (2015). Two-stage effects of awareness cascade on epidemic spreading in multiplex networks, Physical Review E, 91(1), 012822, 2015.
https://doi.org/10.1103/PhysRevE.91.012822
Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J. G.; Petri, G. (2020). Networks beyond pairwise interactions: Structure and dynamics, Physics Reports, 874, 1-92, 2020.
https://doi.org/10.1016/j.physrep.2020.05.004
Chierichetti, F.; Lattanzi, S.; Panconesi, A. (2011). Rumor spreading in social networks, Theo- retical Computer Science, 412, 2602-2610, 2011.
https://doi.org/10.1016/j.tcs.2010.11.001
Dragan, D.; Šinko, S.; Keshavarzsaleh, A.; Rosi, M. (2022). Road Freight Transport Forecasting: A Fuzzy Monte-Carlo Simulation-Based Model Selection Approach, Tehnički vjesnik, 29, 81-91, 2022.
https://doi.org/10.17559/TV-20210110140112
Wang, Y.; Jing, G.; Guo, S.; Zhou, F. (2021). Monte Carlo Method-Based Behavioral Reliabil- ity Analysis of Fully-Mechanized Coal Mining Operators in Underground Noise Environment, Tehnički vjesnik, 28, 178-184, 221.
https://doi.org/10.17559/TV-20200620181121
Posedaru, B.; Bologa, R.; Toma, A.; Pantelimon, F. (2022). The Influence of Covid-19 Pandemic on Online Retail Prices, Economic Computation And Economic Cybernetics Studies And Research, 56, 289-304, 2022.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Xuemei You, Man Zhang, Yinghong Ma
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.