Research on the Interaction between Information and Behavior Based on Small Group Effect on Multilayer Social Networks

Authors

  • Xuemei You School of Business, Shandong Normal University, Jinan, China
  • Man Zhang School of Business, Shandong Normal University, Jinan, China
  • Yinghong Ma School of Business, Shandong Normal University, Jinan, China

DOI:

https://doi.org/10.15837/ijccc.2023.5.5074

Abstract

In the era of big data, massive amounts of information play an important role in individual behavior and decision-making. In order to investigate the interaction mechanism between information and individual behavior, we consider the influence of the "small group" network structure in social networks, and construct an information-behavior coupled dynamics propagation model (UAL-NBN) based on small group effect. Then we carry out theoretical analysis and derive the dynamic evolution equations for the model used the Micro Markov Chain Approach (MMCA). And we verify the correctness of the theoretical analysis by performing Monte Carlo simulations (MC). The results show that the small group effect does promote the spread of information and behavior in the population, which is reflected in reducing the epidemic threshold and increasing the outbreak size. In addition, we also conclude that the more small group structures exist in social networks, the more significant the promotion effect of the small group effect is. Finally, we describe the specific application of the model in scenarios such as epidemic control, rumor governance, social behavior advocacy, and consumer marketing, and provide theoretical reference and suggestions for the government and other relevant departments to formulate policies which promote the spread of behavior in society through information dissemination.

References

Suo, Q.; Guo, J.L.; Shen, A.Z. (2018). Information spreading dynamics in hypernetworks, Physica A: Statistical Mechanics and its Applications, 495, 475-487, 2018.

https://doi.org/10.1016/j.physa.2017.12.108

[Online]. Available: https://datareportal.com/reports/digital-2022-april-global-statshot, Accesed on 21 April 2022.

Althoff, T.; Jindal, P.; Leskovec, J. (2017). Online actions with offline impact: How online social networks influence online and offline user behavior, In Proceedings of the tenth ACM international conference on web search and data mining, 537-546, 2017.

https://doi.org/10.1145/3018661.3018672

Dumitru, I; Gârdan, Da; Pas, tiu, Ca; Muntean, Ac; Gârdan, Ip (2021). On the Mechanism of the Label Perception: How Does Labeling Change Food Products Customer Behavior?, Economic Computation And Economic Cybernetics Studies And Research, 55, 193-210, 2021.

https://doi.org/10.24818/18423264/55.2.21.12

Alyouzbaky, B.A.; Hanna, R.D.; Najeeb, S.H. (2022). The Effect of Information Overload, and Social Media Fatigue on Online Consumers Purchasing Decisions: The Mediating Role of Technos- tress and Information Anxiety, Journal of Logistics, Informatics and Service Science, 12, 195-220, 2022.

Zhang, Y.B.; Zhang, L.L.; Kim, H.K. (2021). The effect of UTAUT2 on use intention and use behavior in online learning platform, Journal of Logistics, Informatics and Service Science, 8, 67-81, 2021.

Mutahar, Y.; Farea, M.M., Abdulrab, M.; Al-Mamary, Y.H.; Alfalah, A.A.; Grada, M.; Alsham- mari, .H. (2021). How to nhance he Impact of Perceived Organizational upport on Knowledge Sharing? Evidence from Higher Education Sector, Journal of System and Management Sciences, 11, 27-46, 2021.

Wiliam, A.; Arief, M.; Bandur, A.; Tjhin, V.U. (2022). Are Farmers Ready to Switch Using Precision Agriculture, Journal of System and Management Sciences, 12, 347-364, 2022.

Newman, M.E.; Ferrario, C.R. (2013). Interacting epidemics and coinfection on contact networks, PloS one, 8(8), e71321, 2013.

https://doi.org/10.1371/journal.pone.0071321

Wang, W.; Tang, M.; Yang, H.; Do, Y.; Lai, Y.C.; Lee, G. (2014). Asymmetrically interacting spreading dynamics on complex layered networks, Scientific reports, 4(1), 1-8, 2014.

https://doi.org/10.1038/srep05097

Li, W.; Tian, L.; Gao, X.; Pan, B. (2019). Impacts of information diffusion on green behavior spreading in multiplex networks, Journal of Cleaner Production, 222, 488-498, 2019.

https://doi.org/10.1016/j.jclepro.2019.03.067

Li, W.; Tian, L.; Batool, H. (2018). Impact of negative information diffusion on green behavior adoption, Resources, Conservation and Recycling, 136, 337-344, 2018.

https://doi.org/10.1016/j.resconrec.2018.04.026

Yu, Q.; Yu, Z.; Ma, D. (2020). A multiplex network perspective of innovation diffusion: An information-behavior framework, IEEE Access, 8, 36427-36440, 2020.

https://doi.org/10.1109/ACCESS.2020.2975357

Sayarshad, H.R. (2022). An optimal control policy in fighting Covid-19 and infectious diseases, Applied Soft Computing, 126, 109289, 2022.

https://doi.org/10.1016/j.asoc.2022.109289

Granell, C.; Gómez, S.; Arenas, A. (2013). Dynamical interplay between awareness and epidemic spreading in multiplex etworks, Physical review letters, 11(12), 128701, 2013.

https://doi.org/10.1103/PhysRevLett.111.128701

Granell, C.; Gómez, S.; Arenas, A. (2014). Competing spreading processes on multiplex networks: awareness and epidemics, Physical review E, 90(1), 012808, 2014.

https://doi.org/10.1103/PhysRevE.90.012808

Ye, Y.; Zhang, Q.; Ruan, Z.; Cao, Z.; Xuan, Q.; Zeng, D. D. (2020). Effect of heterogeneous risk perception on information diffusion, behavior change, and disease transmission, Physical Review E, 102(4), 042314, 2020.

https://doi.org/10.1103/PhysRevE.102.042314

Funk, S.; Gilad, E.; Jansen, V. A. (2010). Endemic disease, awareness, and local behavioural response, Journal of theoretical biology, 264(2), 501-509, 2010.

https://doi.org/10.1016/j.jtbi.2010.02.032

Saha, S.; Samanta, G.P.; Nieto, J.J. (2020). Epidemic model of COVID-19 outbreak by inducing behavioural response in population, Nonlinear dynamics, 102(1), 455-487, 2020.

https://doi.org/10.1007/s11071-020-05896-w

Zhao, D.; Wang, L.; Xu, L.; Wang, Z. (2015). Finding another yourself in multiplex networks, Applied Mathematics and Computation, 266, 599-604, 2015.

https://doi.org/10.1016/j.amc.2015.05.099

Fan, C.J.; Jin, Y.; Huo, L.A.; Liu, C.; Yang, Y.P.; Wang, Y.Q. (2016). Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks, Physica A: Statistical Mechanics and its Applications, 461, 523-530, 2016.

https://doi.org/10.1016/j.physa.2016.06.050

Zuo, C.; Zhu, F.; Ling, Y. (2022). Analyzing COVID-19 Vaccination Behavior Using an SEIRM/V Epidemic Model With Awareness Decay, Frontiers in Public Health, 10, 202

https://doi.org/10.3389/fpubh.2022.817749

Zeng, Q.; Liu, Y.; Tang, M.; Gong, J. (2021). Identifying super-spreaders in information-epidemic coevolving dynamics on multiplex networks, Knowledge-Based Systems, 229, 107365, 2021.

https://doi.org/10.1016/j.knosys.2021.107365

Liu, Q.H.; Wang, W.; Tang, M.; Zhang, H.F. (2016). Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks, Scientific reports, (1), 1-13, 2016.

https://doi.org/10.1038/srep25617

Zhang, H.F.; Xie, J.R.; Tang, M.; Lai, Y.C. (2014). Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(4), 043106, 2014.

https://doi.org/10.1063/1.4896333

Bi, K.; Chen, Y.; Zhao, S.; Ben-Arieh, D.; Wu, C.H.J. (2019). Modeling learning and forgetting processes with the corresponding impacts on human behaviors n infectious disease epidemics, Computers & Industrial Engineering, 129, 563-577, 2019.

https://doi.org/10.1016/j.cie.2018.04.035

Kan, J.Q.; Zhang, H.F. (2019). Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading-an approach based on multiplex networks, Communications in Nonlinear Science and Numerical Simulation, 44, 193-203, 2019.

https://doi.org/10.1016/j.cnsns.2016.08.007

Weitz, J.S.; Park, S.W.; Eksin, C.; Dushoff, J. (2020). Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proceedings of the National Academy of Sciences, 117(51), 32764-32771, 2020.

https://doi.org/10.1073/pnas.2009911117

Romualdo Pastor-Satorras; Claudio Castellano; Piet Van Mieghem; Alessandro Vespignani (2015). Epidemic processes in complex networks, Reviews of Modern Physics, 7, 925-979, 2015.

https://doi.org/10.1103/RevModPhys.87.925

Balcan, D.; Vespignani, A. (2011). Phase transitions in contagion processes mediated by recurrent mobility patterns, Nature Phys, 7, 581-586, 2011.

https://doi.org/10.1038/nphys1944

Colizza V; Barrat A; Barthélemy M; Vespignani A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics, Proceedings of the National Academy of Sciences, 103, 2015-2020, 2006.

https://doi.org/10.1073/pnas.0510525103

Xia, C.; Wang, Z.; Zheng, C.; Guo, Q.; Shi, Y.; Dehmer, M.; Chen, Z. (2019). A new coupled disease-awareness spreading odel with mass media on ultiplex networks, Information Sciences, 471, 185-200, 2019.

https://doi.org/10.1016/j.ins.2018.08.050

Wang, Z.; Xia, C.; Chen, Z.; Chen, G. (2021). Epidemic Propagation With Positive and Negative Preventive Information in Multiplex Networks, IEEE Transactions on Cybernetics, 51, 1454-1462, 2021.

https://doi.org/10.1109/TCYB.2019.2960605

Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. (2006). Complex networks: Struc- ture and dynamics, Physics Reports, 424, 175-308, 2006.

https://doi.org/10.1016/j.physrep.2005.10.009

Li, Y.; Zou, X. (2016). Identifying disease modules and components of viral infections based on multi-layer networks, Science China Information Sciences, 59, 070102, 2016.

https://doi.org/10.1007/s11432-016-5580-2

Pastor-Satorras R; Vespignani A. (2001). Epidemic Spreading in Scale-Free Networks, Phys Rev Lett, 86, 3200-3203, 2001.

https://doi.org/10.1103/PhysRevLett.86.3200

Li, W.; Ni, L.; Zhang, Y.; Su, S.; Peng, B.; Wang, W. (2022). Immunization strategies for simplicial irreversible epidemic on simplicial complex, Frontiers in Physics, 10, 2022.

https://doi.org/10.3389/fphy.2022.1018844

Yin, Q.; Wang, Z.; Xia, C.; Dehmer, M.; Emmert-Streib, F.; Jin, Z. (2020). A novel epidemic model considering demographics and intercity commuting on complex dynamical networks, Ap- plied Mathematics and Computation, 386, 125517, 2020.

https://doi.org/10.1016/j.amc.2020.125517

Levnajić, Z.; Pikovsky, A. (2011). Network reconstruction from random phase resetting, Physical review letters, 107(3), 034101, 2011

https://doi.org/10.1103/PhysRevLett.107.034101

Wu, J.; Yang, H.; Ren, Y.; Li, X.R. (2018). A two-stage algorithm for network reconstruction, Applied Soft Computing, 70, 751-763, 2018.

https://doi.org/10.1016/j.asoc.2018.06.007

Zhou, J.; Liu, H. (2022). Modeling the Impact of Virtual Contact Network with Community Structure on the Epidemic Spreading, Complexity, 2022, 2022.

https://doi.org/10.1155/2022/9551912

Chang, X.; Cai, C.R.; Zhang, J.Q.; Wang, C.Y. (2021). Analytical solution of epidemic threshold for coupled information-epidemic dynamics on multiplex networks with alterable heterogeneity, Physical Review E, 104(4), 044303, 2021.

https://doi.org/10.1103/PhysRevE.104.044303

Guo, H.; Yin, Q.; Xia, C.; Dehmer, M. (2021). Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks, Nonlinear Dynamics, 105(4), 3819-3833, 2021.

https://doi.org/10.1007/s11071-021-06784-7

Li, M.; Wang, M.; Xue, S.; Ma, J. (2020). The influence of awareness on epidemic spreading on random etworks, Journal of Theoretical Biology, 486, 10090, 020.

https://doi.org/10.1016/j.jtbi.2019.110090

Kabir, K.A.; Tanimoto, J. (2019). Analysis of epidemic outbreaks in two-layer networks with different structures for information spreading and disease diffusion, Communications in Nonlinear Science and Numerical Simulation, 72, 565-574, 2019.

https://doi.org/10.1016/j.cnsns.2019.01.020

Ariful Kabir, K.M.; Tanimotoc, J. (2019). Impact of awareness in metapopulation epidemic model to suppress the infected individuals for different graphs, The European Physical Journal B, 92(9), 1-16, 2019.

https://doi.org/10.1140/epjb/e2019-90570-7

Zheng, M.; Lü, L.; Zhao, M. (2013). Spreading in online social networks: The role of social reinforcement, Physical Review E, 88(1), 012818, 2013.

https://doi.org/10.1103/PhysRevE.88.012818

Sherchan, W.; Nepal, S.; Paris, C. (2013). A survey of trust in social networks, ACM Computing Surveys (CSUR), 45(4), 1-33, 2013.

https://doi.org/10.1145/2501654.2501661

Wu, H.; Arenas, A.; Gómez, S. (2017). Influence of trust in the spreading of information, Physical Review E, 95(1), 012301, 2017.

https://doi.org/10.1103/PhysRevE.95.012301

Chowdhury, W.; Burt, C.; Akkaoui, A.; Davies, J. (2015). Quanty: An online game for eliciting the wisdom of the crowd, Computers in Human Behavior, 49, 213-219, 2015.

https://doi.org/10.1016/j.chb.2015.03.004

Duo, Q.; Shen, H.; Zhao, J.; Gong, X. (2016). Conformity behavior during a fire disaster, Social Behavior and Personality: an international journal, 44(2), 313-324, 2016.

https://doi.org/10.2224/sbp.2016.44.2.313

Yan, X.; Jiang, P. (2018). Effect of the dynamics of human behavior on the competitive spreading of information, Computers in Human Behavior, 89, 1-7, 2018.

https://doi.org/10.1016/j.chb.2018.07.014

Guo, Q.; Jiang, X.; Lei, Y.; Li, M.; Ma, Y.; Zheng, Z. (2015). Two-stage effects of awareness cascade on epidemic spreading in multiplex networks, Physical Review E, 91(1), 012822, 2015.

https://doi.org/10.1103/PhysRevE.91.012822

Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J. G.; Petri, G. (2020). Networks beyond pairwise interactions: Structure and dynamics, Physics Reports, 874, 1-92, 2020.

https://doi.org/10.1016/j.physrep.2020.05.004

Chierichetti, F.; Lattanzi, S.; Panconesi, A. (2011). Rumor spreading in social networks, Theo- retical Computer Science, 412, 2602-2610, 2011.

https://doi.org/10.1016/j.tcs.2010.11.001

Dragan, D.; Šinko, S.; Keshavarzsaleh, A.; Rosi, M. (2022). Road Freight Transport Forecasting: A Fuzzy Monte-Carlo Simulation-Based Model Selection Approach, Tehnički vjesnik, 29, 81-91, 2022.

https://doi.org/10.17559/TV-20210110140112

Wang, Y.; Jing, G.; Guo, S.; Zhou, F. (2021). Monte Carlo Method-Based Behavioral Reliabil- ity Analysis of Fully-Mechanized Coal Mining Operators in Underground Noise Environment, Tehnički vjesnik, 28, 178-184, 221.

https://doi.org/10.17559/TV-20200620181121

Posedaru, B.; Bologa, R.; Toma, A.; Pantelimon, F. (2022). The Influence of Covid-19 Pandemic on Online Retail Prices, Economic Computation And Economic Cybernetics Studies And Research, 56, 289-304, 2022.

https://doi.org/10.24818/18423264/56.1.22.18

Additional Files

Published

2023-08-31

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.