Application of Deep Neural Network for Gas Source Localization in an Indoor Environment
DOI:
https://doi.org/10.15837/ijccc.2023.3.5084Keywords:
Localization, deep learning, Gas source localization, data prediction, computational fluid dynamicAbstract
Nowadays, the quality of air in the environment has been impacted by the industry. It is important to make sure our ambient air especially in an indoor environment is clean from contaminating particles or harmful gases. Therefore, the air quality inside the indoor environment should be monitored regularly. One of the major problems, when a particular environment has been contaminated by harmful gases, is finding the source of the emission. If the indoor environment has been contaminated by a harmful source it should be instantly localized and eliminated to prevent severe casualties. In this paper, we propose the utilization of synthetic data generated by the Computational Fluid Dynamic (CFD) approach to train the Deep Neural Network (DNN) model called CFD-DNN to perform gas source localization in an indoor environment. The model is capable to locate the contaminated source within a small area of an indoor environment. A total of 361 datasets with different locations of contaminated source release have been obtained using the CFD approach. The obtained dataset was divided into training and testing datasets. The training dataset was used for the model training process while the testing dataset is fed into the model to test model reliability to predict the gas source location. The Euclidian distance equation was used to measure the distance error between the actual and predicted location of the source. The result shows that the model is capable to locate the gas source within a minimum and maximum error of 0.03m to 0.46m respectively.References
G. Kowadlo and R. A. Russell. (2008). Robot odor localization: A taxonomy and survey, The International Journal of Robotics Research, vol. 27, no. 8, pp. 869-894, Aug. 2008, doi: 10.1177/0278364908095118
https://doi.org/10.1177/0278364908095118
T. I. Express.(2016). Bangladesh: 250 fall sick after toxic gas leak at fertiliser unit | World News,The Indian Express, https://indianexpress.com/article/world/world-news/bangladeshtoxic- gas-leak-at-fertiliser-unit-sickens-250-2992087/ (accessed Dec. 02, 2020).
New Age.(2020). One in five fire accidents linked to gas leakage, https://www.newagebd.net/article/115736/one-in-five-fire-accidents-linked-to-gas-leakage (accessed Dec. 28, 2022).
V. M. H. Bennetts, A. J. Lilienthal, A. A. Khaliq, V. P. Sese, and M. Trincavelli.(2013). Towards real-world gas distribution mapping and leak localization using a mobile robot with 3d and remote gas sensing capabilities, Proceedings - IEEE International Conference on Robotics and Automation, pp. 2335-2340, 2013, doi: 10.1109/ICRA.2013.6630893.
https://doi.org/10.1109/ICRA.2013.6630893
V. H. Bennetts, M. Trincavelli, A. J. Lilienthal, V. Pomareda, and E. Schaffernicht.(2014). Online parameter selection for gas distribution mapping, Sensor Letters, vol. 12, no. 6-7, pp. 1147-1151, 2014, doi: 10.1166/sl.2014.3191.
https://doi.org/10.1166/sl.2014.3191
L. Dong, H. Zuo, L. Hu, B. Yang, L. Li, and L. Wu.(2017). Simulation of heavy gas dispersion in a large indoor space using CFD model, Journal of Loss Prevention in the Process Industries, vol. 46, pp. 1-12, 2017, doi: 10.1016/j.jlp.2017.01.012.
https://doi.org/10.1016/j.jlp.2017.01.012
H. Ishida, Y.Wada, and H. Matsukura.(2012). Chemical sensing in robotic applications: A review, IEEE Sensors Journal, vol. 12, no. 11, pp. 3163-3173, 2012, doi: 10.1109/JSEN.2012.2208740.
https://doi.org/10.1109/JSEN.2012.2208740
H. Ishida, T. Yamanaka, N. Kushida, T. Nakamoto, and T. Moriizumi.(2000). Study of real-time visualization of gas/odor flow image using gas sensor array, Sensors and Actuators, B: Chemical, vol. 65, no. 1-3, pp. 14-16, Jun. 2000, doi: 10.1016/S0925-4005(99)00415-3.
https://doi.org/10.1016/S0925-4005(99)00415-3
E. M. Moraud and D. Martinez.(2010). Effectiveness and robustness of robot infotaxis for searching in dilute conditions, Frontiers in Neurorobotics, vol. 4, no. MAR, pp. 1-8, 2010, doi: 10.3389/fnbot.2010.00001.
https://doi.org/10.3389/fnbot.2010.00001
J. Burgués, V. Hernández, A. J. Lilienthal, and S. Marco.(2020). Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors, Sensors and Actuators, B: Chemical. , vol. 304, no. August, p. 127309, 2020, doi: 10.1016/j.snb.2019.127309.
https://doi.org/10.1016/j.snb.2019.127309
H. Ishida, K. Suetsugu, T. Nakamoto, and T. Moriizumi.(1994). Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors, Sensors and Actuators A: Physical, vol. 45, no. 2, pp. 153-157, 1994, doi: 10.1016/0924-4247(94)00829-9.
https://doi.org/10.1016/0924-4247(94)00829-9
J. Atema.(1996) Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors, Biological Bulletin, vol. 191, no. 1, pp. 129-138, 1996, doi: 10.2307/1543074.
https://doi.org/10.2307/1543074
P. Neumann, V. H. Bennetts, and M. Bartholmai.(2012). Adaptive gas source localization strategies and gas distribution mapping using a gas-sensitive micro-drone, Fachtagung Sensoren und Messsyst. 2012, pp. 800-809, 2012, doi: 10.5162/sensoren2012/P5.4.
https://doi.org/10.5162/sensoren2012/P5.4
M. Vergassola, E. Villermaux, and B. I. Shraiman.(2007). Infotaxis' as a strategy for searching without gradients, Nature, vol. 445, no. 7126, pp. 406-409, 2007, doi: 10.1038/nature05464.
https://doi.org/10.1038/nature05464
J. G. Monroy, J. L. Blanco, and J. Gonzalez-Jimenez.(2015). Time-variant gas distribution mapping with obstacle information, Autonomous Robots, vol. 40, no. 1, pp. 1-16, 2015, doi: 10.1007/s10514-015-9437-0.
https://doi.org/10.1007/s10514-015-9437-0
M. Reggente and A. J. Lilienthal.(2009). Three-dimensional statistical gas distribution mapping in an uncontrolled indoor environment, AIP Conference Proceedings, vol. 1137, pp. 109-112, 2009, doi: 10.1063/1.3156484.
https://doi.org/10.1063/1.3156484
M. S. Awadalla, T.F. Lu, Z. F. Tian, and B. Dally.(2012). CFD modeling of 3D indoor gas contaminant plumes for testing search algorithms of mobile robot, Gas, vol. 2, no. S5, p. S6, 2012, [Online]. Available: http://www.cfd.com.au/cfd_conf12/PDFs/201AWA.pdf
P. Ojeda, J. Monroy, and J. Gonzalez-Jimenez.(2021). Information-driven gas source localization exploiting gas and wind local measurements for autonomous mobile Robots, IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1320-1326, 2021, doi: 10.1109/LRA.2021.3057290.
https://doi.org/10.1109/LRA.2021.3057290
M. G. W Khalaf, C Pace.(2008). Gas detection via machine learning, International Journal Computer Electrrical Autonomous Control Inf., vol. 2, no. 1, pp. 61-65, 2008.
S. Mahfouz, F. Mourad-chehade, P. Honeine, J. Farah, and H. Snoussi.(2016). Machine learning in WSNs, vol. 16, no. 14, pp. 5795-5804, 2016.
https://doi.org/10.1109/JSEN.2016.2569559
H. Kim, M. Park, C. W. Kim, and D. Shin.(2019). Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation, Computers and Chemical Engineering, vol. 125, pp. 476-489, 2019, doi: 10.1016/j.compchemeng.2019.03.012.
https://doi.org/10.1016/j.compchemeng.2019.03.012
C. Bilgera, A. Yamamoto, M. Sawano, H. Matsukura, and H. Ishida.(2018). Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments, Sensors (Switzerland), vol. 18, no. 12, 2018, doi: 10.3390/s18124484.
https://doi.org/10.3390/s18124484
H. L. Yu, B. H. Chen, K. S. Kim, P. Siwayanan, S. Y. T. Choong, and Z. H. Ban.(2022). Source localization for illegal plastic burning in Malaysia via CFD-ANN approach, Digital Chemical Engineering, vol. 3, no. March, p. 100029, 2022, doi: 10.1016/j.dche.2022.100029.
https://doi.org/10.1016/j.dche.2022.100029
Z. H. M. Juffry, K. Kamarudin, A. H. Adom, H. Nishizaki, A. Zakaria, S.M. Mamduh, A. N. Abdullah(2022). Deep neural network for localizing gas source based on gas distribution map, International Conference on Electrical, Control and Computer Engineering, 2022, pp. 1105-1115. doi: 10.1007/978-981-16-8690-0_96.
https://doi.org/10.1007/978-981-16-8690-0_96
P. K. Kundu, I. M. Cohen, and D. R. Dowling.(2016). Conservation laws, Fluid Mechanics, pp. 109-193. doi: 10.1016/b978-0-12-405935-1.00004-6.
https://doi.org/10.1016/B978-0-12-405935-1.00004-6
ANSYS.(2011). ANSYS CFD-Solver theory guide. Release 14.0, vol. 15317, no. November, pp. 724-746, 2011, [Online]. Available: http://www1.ansys.com/customer/content/documentation/140/cfx_thry.pdf
J. C. R. Hunt.(1973). Mathematical models of turbulence, Academic Press, 169 pp. £2.50 or 7.50," J. Fluid Mech., vol. 57, no. 4, pp. 826-828, Mar. 1973, doi: 10.1017/S0022112073222048.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Zaffry Hadi Mohd Juffry, Kamarulzaman, Abdul Hamid, Muhammad Fahmi, Latifah Munirah, Ammar, Syed Muhammad Mamduh, Abdulnasser
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.