Floods risk determination through a fuzzy logic system in developing countries. Case study Magdalena River, Colombia

Authors

  • Gabriel Elías Chanchí Golondrino Faculty of Engineering, University of Cartagena, Colombia
  • Manuel Alejandro Ospina Alarcón Faculty of Engineering, University of Cartagena, Colombia
  • Manuel Saba Faculty of Engineering, University of Cartagena, Colombia

DOI:

https://doi.org/10.15837/ijccc.2023.5.5103

Keywords:

early warning systems, floods disaster prevention, early warning in Latin America, fuzzy logic systems

Abstract

Natural disasters around the world, and specifically floods, can generate great economic, en- vironmental, and human life losses in short periods of time. Early warning systems have been developed as a tool to mitigate the impact of these floods, nevertheless, most of this information is dispersed. In the particular case of the Colombian context, the Institute of Hydrology, Meteorology and Environmental Studies of Colombia (IDEAM) has developed a platform called Famine Early Warning Systems Network (FEWS), which presents data of interest for the different stations in the basins of the territory, such as: level, flow, and rainfall. From the height level of water table data of each station, the platform presents three possible alerts: yellow, orange, and red, which are obtained y comparing with reference or threshold levels associated ith ach station. However, the method currently used to determine the alerts does not consider the ariation of he water table level as a function of ime, or the degree of danger represented y a value close to or ending to flood threshold levels. This work proposed a contribution to determine the flood risk level, based on the development of a fuzzy system, taking as inputs the water table level and the level variation as a function of time, to obtain as output the flood risk level in numerical and linguistic terms. For the determination of the risk level, the system applies inference logic rules, involving operations between fuzzy sets represented through mathematical membership functions. Finally, the operation of the fuzzy system was validated using data from the FEWS platform for the hydrological stations of the Bajo Magdalena basin. This project aims to serve as a reference to improve early warning systems of developing couries

References

Aceto, L.; Caloiero,T.; Pasqua,A. A. and Petrucci, O.; (2016). Analysis of damaging hydrogeo- logical events in a Mediterranean region (Calabria), Journal of Hydrology, vol. 541, pp. 510-522, Oct. 2016.

https://doi.org/10.1016/j.jhydrol.2015.12.041

Zucarelli, G. V.; (2022). Identificación de eventos hídricos extremos en la cuenca del río Paraná, Tecnología y ciencias del agua, vol.4 no.5 Jiutepec nov./dic. 2013 https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222013000500012

Monteleone,S.; Sabatino,M.; (2014). Hydrogeological hazards and weather events: Triggering and evolution of shallow landslides, Int. Soil Water Conserv. Res, vol. 2, no. 2, pp. 23-29, Jun. 2014.

https://doi.org/10.1016/S2095-6339(15)30003-4

Blin, N.; Hausner, M.; Leray, S.; Lowry,C.; and Suárez,F.; (2022). Potential impacts of climate change on an aquifer in the arid Altiplano, northern Chile: The case of the protected wet- lands of the Salar del Huasco basin, J. Hydrol. Reg. Stud, vol. 9, p. 100996, Feb. 2022.

https://doi.org/10.1016/j.ejrh.2022.100996

Moreno, D.; Quiñones,É.; and Tovar, L. C.; (2014). Los Sistemas de Alerta Temprana, SAT, una herramienta para la prevención de desastres por inundación y efectos del cambio climático, Rev. Ciencias e Ing. al Día, vol. 9, no. 1, pp. 7-24, 2014, [Online]. Available: www.revistaciad.org.

Nyiwul, L.; (2021). Climate change adaptation and inequality in Africa: Case of wa- ter, energy and food insecurity, J. Clean. Prod, vol. 278, p. 123393, Jan. 2021.

https://doi.org/10.1016/j.jclepro.2020.123393

Ogie,R. I.; Holderness,T.; Dunn,S.; and Turpin,E.; (2018). Assessing the vulnerability of hydro- logical infrastructure to flood damage in coastal cities of developing nations, Comput. Environ. Urban Syst., vol. 68, pp. 97-109, Mar. 2018.

https://doi.org/10.1016/j.compenvurbsys.2017.11.004

KriChene, H.; Geiger, T.; Frieler, K.; Willner, S. N.; Sauer, I.; and Otto, C.; (2018). Long- term impacts of tropical cyclones and fluvial floods on economic growth - Empirical evidence on transmission channels at different levels of development, World Dev., vol. 144, p. 105475, Aug. 2021.

https://doi.org/10.1016/j.worlddev.2021.105475

[Online]. Available: https://www.undrr.org/publication/economic-losses-poverty-disasters-1998- 2017., Accesed on 02 July 2023.

Chan, F. K. S.; Yang, L. E.; Scheffran,J.; l, Olalekan Adekola, G. M,; , Yangbo Chen, J. G,; , Xiaohui Lu, G. L.; Lei Li, Y. Q.; Adrian McDonald, H. Z.; (2021). Urban flood risks and emerging challenges in a Chinese delta: The case of the Pearl River Delta, Environ. Sci. Policy, vol. 122, pp. 101-115, Aug. 2021.

https://doi.org/10.1016/j.envsci.2021.04.009

Vitale, C.; Meijerink, S.; Moccia, F. D.; and Ache,P.; (2020). Urban flood resilience, a discursive- institutional analysis of planning practices in the Metropolitan City of Milan, Environ. Sci. Policy, vol. 95, p. 104575, Jun. 2020.

https://doi.org/10.1016/j.landusepol.2020.104575

Langemeyer, J.; Madrid-Lopez, C.; Mendoza Beltran, A.; and Villalba Mendez, G.; (2021). Urban agriculture - A necessary pathway towards urban resilience and global sustainability?, Environ. Sci. Policy, vol. 210,

https://doi.org/10.1016/j.landurbplan.2021.104055

Vachaud, G.; Quertamp, F., Phan, T. S. H.; Tran Ngoc, T. D.; g Nguyen, T.; Loc Luu, X., Nguyen, A. T.; Gratiot, N.; (2019). Flood-related risks in Ho Chi Minh City and ways of mitigation, J. Hydrol., vol. 573, pp. 1021-1027, Jun. 2019.

https://doi.org/10.1016/j.jhydrol.2018.02.044

Leitold, R.; Garschagen, M.; Tran, V.; and Revilla Diez, J.; (2021). Flood risk reduction and climate change adaptation of manufacturing firms: Global knowledge gaps and lessons from Ho Chi Minh City, Int. J. Disaster Risk Reduct, vol. 61, p. 102351, Jul. 2021.

https://doi.org/10.1016/j.ijdrr.2021.102351

Salvador Gil-Guirado, M. B.; , Jordi Tuset, D. P.; Perez-Morales, A.; Joan Costa, A. A.; Balasch, J. C.; Jordi Mazon, X. C.; Ruiz-Bellet, J. L.; (2019). Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th-20th centuries), Glob. Planet. Change, vol. 182, p. 102997, Nov. 2019.

https://doi.org/10.1016/j.gloplacha.2019.102997

Yamín, L.; Guesquiere, F.; Cardona, O. D.; and Ordaz, M. G.; (2013). [Online]. Available: https://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/19763, Accesed n 2 July 2023.

Ghesquiere,F.;andMahul,O.;(2010).[Online].Available: https://openknowledge.worldbank.org/handle/10986/3912, Accesed on 02 July 2023.

Birkmann, J.; Chang Seng, D.; and Setiadi, N.; (2013). Enhancing early warning in the light of migration and environmental shocks, Environ. Sci. Policy, vol. 27, pp. S76-S88, Mar. 2013.

https://doi.org/10.1016/j.envsci.2012.04.002

Domínguez-Calle, E.; Lozano-Báez, S.; and Conceptual. M.; (2014). Estado del arte de los sistemas de alerta temprana en Colombia, Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 38, no. 148, pp. 321-333, Oct. 2014.

https://doi.org/10.18257/raccefyn.132

Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; and Casagli, N; (2012). Design and implementa- tion of a andslide arly warning ystem, Eng. Geol., vol. 147-148, p. 24-136, Oct. 2012.

https://doi.org/10.1016/j.enggeo.2012.07.017

Sufri, S.; Dwirahmadi, F.; Phung, D.; and Rutherford, S.; (2020). A systematic review of Com- munity Engagement (CE) in Disaster Early Warning Systems (EWSs), Prog. Disaster Sci., vol. 5, p. 100058, Jan. 2020.

https://doi.org/10.1016/j.pdisas.2019.100058

Hatmoko, W.; Radhika; Raharja, B.; Tollenaar, D.; and Vernimmen, R. (2015). Monitoring and Prediction of Hydrological Drought Using a Drought Early arning System in Pemali- Comal River Basin, Indonesia. Procedia Environ. Sci., vol. 24, pp. 56-64, Jan. 2015.

https://doi.org/10.1016/j.proenv.2015.03.009

Kuller, M.; Schoenholzer, K.; and Lienert, J. (2021). Creating effective flood warnings: A framework from a critical review. J. Hydrol., vol. 602, p. 126708, Nov. 2021.

https://doi.org/10.1016/j.jhydrol.2021.126708

Alfieri, L.; et al. (2019). Range-dependent thresholds for global flood early warning. J. Hydrol. X, vol. 4, p. 100034, Jul. 2019.

https://doi.org/10.1016/j.hydroa.2019.100034

Paixao, E.; Mirza, M. M. Q.; Shephard, M. W.; Auld, H.; Klaassen, J.; and Smith, G. (2015). An integrated approach for identifying homogeneous regions of extreme rainfall events and estimating IDF curves in Southern Ontario, Canada: Incorporating radar observations. J. Hydrol., vol. 528, pp. 734-750, Sep. 2015.

https://doi.org/10.1016/j.jhydrol.2015.06.015

Li, D.; Fang, Z. N.; and Bedient, P. B. (2021). Flood early warning systems under changing climate and extreme events. Clim. Chang. Extrem. Events, pp. 83-103, Jan. 2021.

https://doi.org/10.1016/B978-0-12-822700-8.00002-0

Basher, R.; (2006). Global early warning systems for natural hazards: systematic and people- centred. Phil. Trans. R. Soc. A., 3642167-2182.

https://doi.org/10.1098/rsta.2006.1819

United Nations;(2023). [Online]. Available:https://www.un-spider.org/links-and- resources/data-sources/global-flood-alert-system-gfas-jaxa, Accesed on 02 July 2023.

Flood Observatory; (2023). [Online]. Available:https://www.un-spider.org/links-and- resources/data-sources/global-flood-alert-system-gfas-jaxa, Accesed on 02 July 2023.

Copernicus; (2023). [Online]. Available: http://www.efas.eu/, Accesed on 02 July 2023.

Borga, M.; Anagnostou, E. N.; Blöschl, G.; and Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy, vol. 14, no. 7, pp. 834-844, 2011.

https://doi.org/10.1016/j.envsci.2011.05.017

NOAA-USGS; (2005). A NOAA-USGS demonstration flash-flood and debris-flow early-warning system. U.S. Geological Survey, 2005-3104.

Programa Mundial de Alimentos; (2007). [Online]. Available: http://www.oas.org/dsd/Nat-Dis- Proj/Documents/SATCA.pdf, Accesed on 02 July 2023.

Instituto de Hidrología Meteorología y Estudios Ambientales; (2021). [Online]. Available: http://www.ideam.gov.co/web/agua/fews, Accesed on 02 July 2023.

Instituto Distrital de Gestión de Riesgos y Cambio Climático; (2016). [Online]. Available: https://www.sire.gov.co/web/sab, Accesed on 02 July 2023.

SIATA; (2021). [Online]. Available: https://siata.gov.co/sitio_web/index.php/monitoreo, Ac- cesed on 02 July 2023.

SAAT; (2012). [Online]. Available: https://repository.agrosavia.co/handle/20.500.12324/20680, Accesed n 02 July 023.

Agencia Suiza para el Desarrollo y la Cooperación; COSUDE; (2010). Implementación de un sis- tema de alerta temprana para la cuenca del rio Combeima, departamento del Tolima - Colombia, ISBN: 9789589970324.

GPAD; (2018). GPAD instala sistemas de alertas tempranas en el Cañón del Combeima y Coello Cocora [Online]. Available: ttps://ibague.gov.co/portal/seccion/noticias/index.php?idnt=6223, Accesed on 02 July 2023.

GPAD; (2020). Con Sistema de Alerta Temprana, se conoce en tiempo real dónde llueve en Bucaramanga [Online]. Available: https://www.bucaramanga.gov.co/noticias/con-sistema- de-alerta-temprana-se-conoce-en-tiempo-real-donde-llueve-en-bucaramanga/, Accesed on 02 July 2023.

Guajira; (2014). Diseño de un sistema de alerta temprana por inundación y desliza- miento en el flanco nororiental de la Sierra Nevada de Santa Marta [Online]. Available: https://corpoguajira.gov.co/wp/programas-y-proyectos/2007-2012/sistema-de-alerta- temprana/, Accesed on 02 July 2023.

Acosta Coll, M. A. (2013). Sistemas de Alerta Temprana (S.A.T) para la Reducción del Riesgo de Inundaciones Súbitas y Fenómenos Atmosféricos en el Área Metropolitana de Barranquilla. Scientia Et Technica, vol. 18, no. 2, pp. 303-308, 2013.

Pamplona;(2014).SATNortedeSantander[Online].Available: https://www.satcnortedesantander.gov.co/General/Alertas/alertas.php, Accesed on 02 July 2023.

Pratt, K. S.; (2009). Design Patterns for Research Methods: Iterative Field Research [Online]. Available: http://kpratt.net/wp-content/uploads/2009/01/research_methods.pdf, Accesed on 02 July 2023.

García, A.; (2017). Inteligencia Artificial Fundamentos, Práctica Y Aplicaciones 2Ed, ISBN: 9789587782233.

Bouza, A. (1997). Microcontroladores estándar en el desarrollo de sistemas de lógica difusa, Proceedings of the III Congreso Argentino de Ciencias de la Computación, 1-16, 1997.

Chanchi, G. E.; Ospina, M. A.; and Monroy,M. E.; Aplicación de la lógica difusa en el análisis de inspecciones heurísticas de usabilidad, Rev. Espac., vol. 1, no. 27, pp. 159-173, 2020

García, A.; (2017). Machine Learning y Deep Learning usando Python, Scikit y Keras, ISBN: 9789587921458.

Pineda Pertuz, C. M,; (2021). Aprendizaje Automático y profundo en Python., ISBN: 97897923162.

Additional Files

Published

2023-08-31

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.