Evaluation of Language Models on Romanian XQuAD and RoITD datasets

Authors

  • Constantin Dragos Nicolae Research Institute for Artificial Intelligence, Romanian Academy
  • Rohan Kumar Yadav Oslo, Norway
  • Dan Tufiş Research Institute for Artificial Intelligence, Romanian Academy

DOI:

https://doi.org/10.15837/ijccc.2023.1.5111

Keywords:

NLP, Question Answering, RoBert, RoGPT, DistilBert, Transformer

Abstract

Natural language processing (NLP) has become a vital requirement in a wide range of applications, including machine translation, information retrieval, and text classification. The development and evaluation of NLP models for various languages have received significant attention in recent years, but there has been relatively little work done on comparing the performance of different language models on Romanian data. In particular, the introduction and evaluation of various Romanian language models with multilingual models have barely been comparatively studied. In this paper, we address this gap by evaluating eight NLP models on two Romanian datasets, XQuAD and RoITD. Our experiments and results show that bert-base-multilingual-cased and bertbase- multilingual-uncased, perform best on both XQuAD and RoITD tasks, while RoBERT-small model and DistilBERT models perform the worst. We also discuss the implications of our findings and outline directions for future work in this area.

References

Akbik, A., Chiticariu, L., Danilevsky, M., Li, Y., Vaithyanathan, S. & Zhu, H. Generating High Quality Proposition Banks for Multilingual Semantic Role Labeling. Proceedings Of The 53rd Annual Meeting Of The Association For Computational Linguistics And The 7th International Joint Conference On Natural Language Processing (Volume 1: Long Papers). pp. 397-407 (2015,7), https://aclanthology.org/P15-1039

https://doi.org/10.3115/v1/P15-1039

Alyafeai, Z. & Ahmad, I. Arabic Compact Language Modelling for Resource Limited Devices. Proceedings Of The Sixth Arabic Natural Language Processing Workshop. pp. 53-59 (2021,4), https://aclanthology.org/2021.wanlp-1.6

Artetxe, M., Ruder, S. & Yogatama, D. On the Cross-lingual Transferability of Monolingual Representations. Annual Meeting Of The Association For Computational Linguistics. (2019)

https://doi.org/10.18653/v1/2020.acl-main.421

Asai, A., Eriguchi, A., Hashimoto, K. & Tsuruoka, Y. Multilingual Extractive Reading Comprehension by Runtime Machine Translation. ArXiv. abs/1809.03275 (2018)

Avram, A., Catrina, D., Cercel, D., Dascualu, M., Rebedea, T., Puaics, V. & Tufics, D. Distilling the Knowledge of Romanian BERTs Using Multiple Teachers. LREC. (2021)

Avram, A., Catrina, D., Cercel, D., Dascălu, M., Rebedea, T., Păiş, V. & Tufiş, D. Distilling the Knowledge of Romanian BERTs Using Multiple Teachers. (arXiv,2021)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. & Amodei, D. Language Models Are Few-Shot Learners. Proceedings Of The 34th International Conference On Neural Information Processing Systems. (2020)

Chen, D., Fisch, A., Weston, J. & Bordes, A. Reading Wikipedia to Answer Open-Domain Questions. Proceedings Of The 55th Annual Meeting Of The Association For Computational Linguistics (Volume 1: Long Papers). pp. 1870-1879 (2017,7), https://aclanthology.org/P17- 1171

https://doi.org/10.18653/v1/P17-1171

Clark, K., Luong, M., Le, Q. & Manning, C. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. 8th International Conference On Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. (2020), https://openreview.net/forum?id=r1xMH1BtvB

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S., Schwenk, H. & Stoyanov, V. XNLI: Evaluating Cross-lingual Sentence Representations. Proceedings Of The 2018 Conference On Empirical Methods In Natural Language Processing. pp. 2475-2485 (2018), https://aclanthology.org/D18-1269

https://doi.org/10.18653/v1/D18-1269

Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T. & Hu, G. Attention-over-Attention Neural Networks for Reading Comprehension. Proceedings Of The 55th Annual Meeting Of The Association For Computational Linguistics (Volume 1: Long Papers). pp. 593-602 (2017,7), https://aclanthology.org/P17-1055

https://doi.org/10.18653/v1/P17-1055

Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings Of The 2019 Conference Of The North American Chapter Of The Association For Computational Linguistics: Human Language Technologies, Volume 1 (Long And Short Papers). pp. 4171-4186 (2019)

Dhingra, B., Liu, H., Yang, Z., Cohen, W. & Salakhutdinov, R. Gated-Attention Readers for Text Comprehension. Proceedings Of The 55th Annual Meeting Of The Association For Computational Linguistics (Volume 1: Long Papers). pp. 1832-1846 (2017,7), https://aclanthology.org/P17-1168

https://doi.org/10.18653/v1/P17-1168

Dumitrescu, S., Avram, A. & Pyysalo, S. The birth of Romanian BERT. Findings Of The Association For Computational Linguistics: EMNLP 2020. pp. 4324-4328 (2020), https://aclanthology.org/2020.findings-emnlp.387

https://doi.org/10.18653/v1/2020.findings-emnlp.387

Ion R., Badea V.G., Cioroiu G., Mititelu V., Irimia E., Mitrofan M. & Tufis D. A Dialog Manager for Micro-Worlds In Studies in Informatics and Control, 29(4) . ISSN: 1220-1766 eISSN: 1841-429X pp. 411-420 (2020)

https://doi.org/10.24846/v29i4y202003

Hendrycks, D. & Gimpel, K. Gaussian Error Linear Units (GELUs). ArXiv: Learning. (2016)

Hinton, G., Vinyals, O. & Dean, J. Distilling the Knowledge in a Neural Network. ArXiv. abs/1503.02531 (2015)

Kadlec, R., Schmid, M., Bajgar, O. & Kleindienst, J. Text Understanding with the Attention Sum Reader Network. Proceedings Of The 54th Annual Meeting Of The Association For Computational Linguistics (Volume 1: Long Papers). pp. 908-918 (2016,8), https://aclanthology.org/P16-1086

https://doi.org/10.18653/v1/P16-1086

Kim, J., Jun, J. & Zhang, B. Bilinear Attention Networks. Proceedings Of The 32nd International Conference On Neural Information Processing Systems. pp. 1571-1581 (2018)

Kingma, D. & Ba, J. Adam: A Method for Stochastic Optimization. CoRR. abs/1412.6980 (2014)

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M., Chang, M., Dai, A., Uszkoreit, J., Le, Q. & Petrov, S. Natural Questions: A Benchmark for Question Answering Research. Transactions Of The Association For Computational Linguistics. 7 pp. 452-466 (2019), https://aclanthology.org/Q19-1026

https://doi.org/10.1162/tacl_a_00276

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.. ICLR. (2020)

Lee, S., Jang, H., Baik, Y., Park, S. & Shin, H. KR-BERT: A Small-Scale Korean-Specific Language Model. ArXiv: Computation And Language. (2020)

https://doi.org/10.5626/JOK.2020.47.7.682

Lewis, D., Yang, Y., Rose, T. & Li, F. RCV1: A New Benchmark Collection for Text Categorization Research. J. Mach. Learn. Res.. 5 pp. 361-397 (2004)

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L. & Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv. abs/1907.11692 (2019)

Masala, M., Ruseti, S. & Dascalu, M. RoBERT - A Romanian BERT Model. International Conference On Computational Linguistics. (2020)

https://doi.org/10.18653/v1/2020.coling-main.581

Muffo, M. & Bertino, E. BERTino: An Italian DistilBERT model. Italian Conference On Computational Linguistics. (2020)

https://doi.org/10.4000/books.aaccademia.8748

Nicolae D. C., Tufis D. RoITD: Romanian IT Question Answering Dataset. ConsILR-2021. (2021)

Niculescu, M., Ruseti, S. & Dascalu, M. RoGPT2: Romanian GPT2 for Text Generation. 2021 IEEE 33rd International Conference On Tools With Artificial Intelligence (ICTAI). pp. 1154-1161 (2021)

https://doi.org/10.1109/ICTAI52525.2021.00183

Park, C., Song, H. & Lee, C. S 3 -NET: SRU-Based Sentence and Self-Matching Networks for Machine Reading Comprehension. (2020)

Radford, A. & Narasimhan, K. Improving Language Understanding by Generative Pre- Training. (2018)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. Language Models are Unsupervised Multitask Learners. (2019)

Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ Questions for Machine Comprehension of Text. Proceedings Of The 2016 Conference On Empirical Methods In Natural Language Processing. pp. 2383-2392 (2016,11), https://aclanthology.org/D16-1264

https://doi.org/10.18653/v1/D16-1264

Richardson, M., Burges, C. & Renshaw, E. MCTest: A Challenge Dataset for the Open- Domain Machine Comprehension of Text. Conference On Empirical Methods In Natural Language Processing. (2013)

Sanh, V., Debut, L., Chaumond, J. & Wolf, T. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv. abs/1910.01108 (2019)

Sarzyńska-Wawer, J.,Wawer, A., Pawlak, A., Szymanowska, J., Stefaniak, I., Jarkiewicz, M. & Okruszek, L. Detecting formal thought disorder by deep contextualized word representations. Psychiatry Research. 304 (2021)

https://doi.org/10.1016/j.psychres.2021.114135

Scheible, R., Thomczyk, F., Tippmann, P., Jaravine, V. & Boeker, M. GottBERT: a pure German Language Model. ArXiv. abs/2012.02110 (2020)

Schwartz, R., Dodge, J., Smith, N. & Etzioni, O. Green AI. Communications Of The ACM. 63 pp. 54 - 63 (2019)

https://doi.org/10.1145/3381831

Tufis, , D. Romanian Language Technology - a view from an academic perspective. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS and CONTROL. 17 (2022,1), https://doi.org/10.15837/ijccc.2022.1.4641

https://doi.org/10.15837/ijccc.2022.1.4641

Tufis D., Filip F. G. (coordinators). Limba Romana in Societatea Informationala - Societatea Cunoasterii, editura Expert . ISBN: 973-8177-83-9 pp. 512 (2002)

Schwenk, H. & Li, X. A Corpus for Multilingual Document Classification in Eight Languages. ArXiv. abs/1805.09821 (2018)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, Ł. & Polosukhin, I. Attention is All You Need. Proceedings Of The 31st International Conference On Neural Information Processing Systems. pp. 6000-6010 (2017)

Vries, W., Cranenburgh, A., Bisazza, A., Caselli, T., Noord, G. & Nissim, M. BERTje: A Dutch BERT Model. ArXiv. abs/1912.09582 (2019)

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. & Le, Q. XLNet: Generalized Autoregressive Pretraining for Language Understanding. Proceedings Of The 33rd International Conference On Neural Information Processing Systems. (2019)

Zadeh L., Tufis D., Filip F.G., Dzitac I.(editors) From Natural Language to Soft Computing: New Paradigms in Artificial Intelligence, Editura Academiei . ISBN: 978-973-27-1678-6 pp. 268 (2009)

Additional Files

Published

2023-02-09

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.