A new ranking method for trapezoidal intuitionistic fuzzy numbers and its application to multi-criteria decision making

Authors

  • Lorena Popa Aurel Vlaicu University of Arad, Romania

DOI:

https://doi.org/10.15837/ijccc.2023.2.5118

Keywords:

ranking method; trapezoidal intuitionistic fuzzy number; multi-criteria decision making.

Abstract

The ranking of intuitionistic fuzzy numbers is paramount in the decision making process in a fuzzy and uncertain environment. In this paper, a new ranking function is defined, which is based on Robust’s ranking index of the membership function and the non-membership function of trapezoidal intuitionistic fuzzy numbers. The mentioned function also incorporates a parameter for the attitude of the decision factors. The given method is illustrated through several numerical examples and is studied in comparison to other already-existent methods. Starting from the new classification method, an algorithm for solving fuzzy multi-criteria decision-making (MCDM) problems is proposed. The application of said algorithm implies accepting the subjectivity of the deciding factors, and offers a clear perspective on the way in which the subjective attitude influences the decision-making process. Finally, a MCDM problem is solved to outline the advantages of the algorithm proposed in this paper.

References

Atalik, G.; Senturk, S. (2019). A new ranking method for triangular intuitionistic fuzzy number based on Gergonne point, Journal of Quantitative Sciences, 1(1), 59-73, 2019.

Atanassov, K.T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-97, 1986.

https://doi.org/10.1016/S0165-0114(86)80034-3

Bharati, S. K. (2017). Ranking Method of Intuitionistic Fuzzy Numbers, Global Journal of Pure and Applied Mathematics, 13(9), 4595-4608, 2017.

De P. K.; Das, D. (2012). Ranking of trapezoidal intuitionistic fuzzy numbers, 12th International Conference on Intelligent Systems Design and Applications (ISDA), 184-188, 2012.

https://doi.org/10.1109/ISDA.2012.6416534

Dhankhar, C.; Kumar, K. (2022). Multi-attribute decision-making based on the advanced possibility degree measure of intuitionistic fuzzy numbers, Granular Computing, 7 217-227, 2022.

https://doi.org/10.1007/s41066-021-00261-7

Dutta, P.; Borah, G. (2022). Multicriteria group decision making via generalized trapezoidal intuitionistic fuzzy number-based novel similarity measure and its application to diverse COVID- 19 scenarios, Artifcial Intelligence Review, https://doi.org/10.1007/s10462-022-10251-z, 2022.

https://doi.org/10.1007/s10462-022-10251-z

Grzegrorzewski P. (2003). The hamming distance between intuitionistic fuzzy sets, In Proceedings of the 10th IFSA world congress, Istanbul, Turkey, 35-38, 2003.

Ye, J. (2011). Expected value method for intuitionistic trapezoidal fuzzy multicriteria decisionmaking problems, Expert Systems with Applications, 38, 11730-11734, 2011.

https://doi.org/10.1016/j.eswa.2011.03.059

Jafarian, E.; Rezvani, M. A. (2013). A valuation-based method for ranking the intuitionistic fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 24, 133-144, 2013.

https://doi.org/10.3233/IFS-2012-0537

Li, D. F. (2010). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Computers and Mathematics with Applications, 60, 155-1570, 2010.

https://doi.org/10.1016/j.camwa.2010.06.039

Li, D. F.; Nan, J. X.; Zhang, M. J. (2010). A Ranking Method of Triangular Intuitionistic Fuzzy Numbers and Application to Decision Making, International Journal of Computational Intelligence Systems, 3(5), 522-530, 2010.

https://doi.org/10.1080/18756891.2010.9727719

Mitchell, H. B (2004). Ranking intuitionistic fuzzy numbers, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 12(3), 377-386, 2004.

https://doi.org/10.1142/S0218488504002886

Mohan, S.; Kannusamy, A. P.; Samiappan, V. A. (2020). New Approach for Ranking of Intuitionistic Fuzzy Numbers, Journal of Fuzzy Extension and Applications, 1(1), 15-26, 2020.

Nagarajan, R.; Solairaju, A. (2010). Computing Improved Fuzzy Optimal Hungarian Assignment Problems with Fuzzy Costs under Robust Ranking Techniques, International Journal of Computer Applications, 6(4), 6-13, 2010.

https://doi.org/10.5120/1070-1398

Nayagam, V. L. G.; Venkateshwari, G.; Sivaraman, G. (2006). Ranking of intuitionistic fuzzy numbers, IEEE International Conference on Fuzzy Systems, 1971-1974, 2006.

Nayagam, V.L.G.; Jeevaraj, S.; Sivaraman, G. (2016). Complete Ranking of Intuitionistic Fuzzy Numbers, Fuzzy Information and Engineering, 8(2), 237-254, 2016.

https://doi.org/10.1016/j.fiae.2016.06.007

Nadaban, S.; Dzitac, S.; Dzitac, I. (2016). Fuzzy TOPSIS: A General View, Procedia Computer Science, 91 (2016) 823-831.

https://doi.org/10.1016/j.procs.2016.07.088

Nehi, H. M.; Maleki, H. R. (2005). Intuitionistic fuzzy numbers and it's applications in fuzzy optimization problem, In Proceedings of the 9th WSEAS international conference on systems, Athens, Greeces, 1-5, 2005.

Prakash, K. A.; Suresh, M.; Vengataasalam, S. (2016). A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept, Mathematical Sciences, 10(4) 177-184, 2016.

https://doi.org/10.1007/s40096-016-0192-y

Rajarajeswari, P.; Sahaya Sudha, P. (2014). Solving a Fully Fuzzy Linear Programming Problem by Ranking, International Journal of Mathematics Trends and Technology, 9(2), 159-164, 2014.

https://doi.org/10.14445/22315373/IJMTT-V9P519

Ren, H.P.; Liu, M.F.; Zhou, H. (2019). Extended TODIM Method for MADM Problem under Trapezoidal Intuitionistic Fuzzy Environment, International Journal of Computers Communications & Control, 14(2), 220-232, 2019.

https://doi.org/10.15837/ijccc.2019.2.3428

Rezvani, S. (2013). Ranking method of trapezoidal intuitionistic fuzzy numbers, Annals of Fuzzy Mathematics and Informatics, 5(3), 515-523, 2013.

https://doi.org/10.5899/2013/jfsva-00139

Roseline, S.S.; Amirtharaj, E. C. H. (2013). A new method for ranking of intuitionistic fuzzy numbers, Indian Journal of Applied Research, 3(6) 1-2, 2013.

https://doi.org/10.15373/2249555X/JUNE2013/183

Uthra, G. ; Thangavelu, K.; Shunmugapriya, S. (2018). Ranking Generalized Intuitionistic Fuzzy Numbers, International Journal of Mathematics Trends and Technology, 56(7), 530-538, 2018.

https://doi.org/10.14445/22315373/IJMTT-V56P569

Wang, J.; Zhang, Z. (2009). Aggregation operators on intuitionistic trapezoidal fuzzy numbers and its application to multi-criteria decision making problems, Journals of System Engineering and Electronics, 20(2), 321-326, 2009.

Xing, Z.; Xiong, W.; Liu, H. (2018). A Euclidian Approach for Ranking Intuitionistic Fuzzy Values, IEEE Transactions on Fuzzy Systems, 26(1), 353-365, 2018.

https://doi.org/10.1109/TFUZZ.2017.2666219

Xu, J.; Yu, L.; Gupta, R. (2020). Evaluating the Performance of the Government Venture Capital Guiding Fund Using the Intuitionistic Fuzzy Analytic Hierarchy Process, Sustainability, 12(7), 6908, 2020.

https://doi.org/10.3390/su12176908

Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8(3), 338-356, 1965.

https://doi.org/10.1016/S0019-9958(65)90241-X

Additional Files

Published

2023-04-03

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.